A rare example of highly selective σ N-C bond difunctionalization in bridged twisted lactams through N-C cleavage has been achieved. In combination with the intramolecular Heck cyclization, this method affords a two-step bond reorganization event ("sew-and-cut") to access functionalized isoquinoline ring systems directly with high atom economy. C-H bond functionalizations directed by a weakly coordinating bridged amide bond increase scaffold diversity. Preliminary mechanistic studies on the effect of amide distortion and the role of electrophile in this unusual σ N-C amide difunctionalization are described.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.7b00913DOI Listing

Publication Analysis

Top Keywords

n-c bond
8
bond difunctionalization
8
difunctionalization bridged
8
bridged twisted
8
n-c
4
twisted amides
4
amides sew-and-cut
4
sew-and-cut activation
4
activation approach
4
approach functionalized
4

Similar Publications

Structure-Function Analysis of CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs.

Biochemistry

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.

View Article and Find Full Text PDF

C-C and C-X bond forming reactions are essential tools in organic synthesis, constantly revolutionizing human life. Among the key methods for constructing new chemical bonds are nucleophilic addition reactions involving imines. However, the inherent challenges in synthesizing and storing imines have stimulated interest in designing stable precursors, which generates imines in situ during the reaction.

View Article and Find Full Text PDF

[Pt(NCN)MeCN] (NCN = 1,3-di(2-pyridyl)benzene, MeCN = acetonitrile) forms oligomers in the ground state due to metallophilic interactions, and a Pt-Pt bond is formed with photoexcitation. Ultrafast excited-state dynamics of the [Pt(NCN)MeCN] dimer in acetonitrile is investigated by femtosecond time-resolved absorption (TA) and picosecond emission spectroscopy. The femtosecond TA signals exhibit 60 cm oscillations arising from the Pt-Pt stretching motion in the S dimer.

View Article and Find Full Text PDF

Cyclization: A potential effective modification strategy for umami peptides.

Food Chem

December 2024

Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China. Electronic address:

Article Synopsis
  • Cyclization can improve the properties of umami peptides, and this study is the first to explore cyclic forms of these peptides.
  • Researchers generated cyclic and linear peptide structures and analyzed their interactions with umami receptors, identifying three promising candidates through docking and clustering.
  • Sensory evaluation showed that cyclization significantly enhanced the umami intensity of one peptide (DPLRGGY), while another (RGEPNND) did not benefit, with molecular analysis revealing structural changes as key factors in these differences.
View Article and Find Full Text PDF

4-Bromo-,'-di-phenyl-benzimidamide '-oxide.

IUCrdata

October 2024

Département de Chimie, Université de Montréal, Complexe des sciences, 1375, Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.

The title compound, CHBrNO, crystallizes with two similar mol-ecules in the asymmetric unit. The extended structure features dimers linked by pairs of N-H⋯O and C-H⋯O hydrogen bonds. The HNCNO moiety of the title compound shows delocalization over the N-C-N part, as evidenced by the similar C-N bond distances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!