Nanoscale magnetic skyrmions are considered as potential information carriers for future spintronics memory and logic devices. Such applications will require the control of their local creation and annihilation, which involves so far solutions that are either energy consuming or difficult to integrate. Here we demonstrate the control of skyrmion bubbles nucleation and annihilation using electric field gating, an easily integrable and potentially energetically efficient solution. We present a detailed stability diagram of the skyrmion bubbles in a Pt/Co/oxide trilayer and show that their stability can be controlled via an applied electric field. An analytical bubble model with the Dzyaloshinskii-Moriya interaction imbedded in the domain wall energy accounts for the observed electrical skyrmion switching effect. This allows us to unveil the origin of the electrical control of skyrmions stability and to show that both magnetic dipolar interaction and the Dzyaloshinskii-Moriya interaction play an important role in the skyrmion bubble stabilization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b00328DOI Listing

Publication Analysis

Top Keywords

skyrmion bubbles
12
electric field
12
dzyaloshinskii-moriya interaction
8
skyrmion
6
skyrmion switch
4
switch turning
4
turning magnetic
4
magnetic skyrmion
4
bubbles electric
4
field nanoscale
4

Similar Publications

Creating and Deleting a Single Dipolar Skyrmion by Surface Spin Twists.

Nano Lett

December 2024

Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.

We report deterministic operations on single dipolar skyrmions confined in nanostructured cuboids by using in-plane currents. We achieve highly reversible writing and deleting of skyrmions in a simple cuboid without any artificial defects or pinning sites. The current-induced creation of skyrmions is well-understood through the spin-transfer torque acting on surface spin twists of the spontaneous 3D ferromagnetic state, caused by the magnetic dipole-dipole interaction of the uniaxial FeSn magnet with a low-quality factor.

View Article and Find Full Text PDF

Stabilization of nanoscale magnetic bubbles in zero magnetic field by rotatable magnetic force microscopy.

Micron

December 2024

University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China. Electronic address:

The Stabilization of bubble magnetic textures in zero magnetic field has garnered significant attention due to its potential application in spintronic devices. Herein, we employed a home-built rotatable magnetic force microscopy (MFM) to observe the evolution of magnetic domains in NiO/Ni/Ti thin films. Magnetic stripe domains decay into isolated magnetic bubbles under an out-of-plane magnetic field at 100 K, and magnetic stripes reappear when the external magnetic field is reduced to zero.

View Article and Find Full Text PDF

Controlling the dynamics of topologically protected spin objects by all-optical means promises enormous potential for future spintronic applications. Excitation of bubbles and skyrmions in ferrimagnetic [Fe(0.35  nm)/Gd(0.

View Article and Find Full Text PDF

The realization of above room-temperature ferromagnetism in the two-dimensional (2D) magnet FeGeTe represents a major advance for the use of van der Waals (vdW) materials in practical spintronic applications. In particular, observations of magnetic skyrmions and related states within exfoliated flakes of this material provide a pathway to the fine-tuning of topological spin textures via 2D material heterostructure engineering. However, there are conflicting reports as to the nature of the magnetic structures in FeGeTe.

View Article and Find Full Text PDF

van der Waals (vdW) magnetic materials, such as CrGeTe (CGT), show promise for memory and logic applications. This is due to their broadly tunable magnetic properties and the presence of topological magnetic features such as skyrmionic bubbles. A systematic study of thickness and oxidation effects on magnetic domain structures is important for designing devices and vdW heterostructures for practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!