Diabetes Management by Probiotics: Current Knowledge and Future Pespective.

Int J Vitam Nutr Res

5 Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, I. R. Iran.

Published: June 2016

Diabetes mellitus, a multifactorial disorder, is related to the intestinal microbiota via numerous molecular mechanisms. The vast increase in the prevalence of diabetes and its associated complications requires a natural and safe solution. There is a growing evidence of gut microbiota effi ciency in improving insulin resistance, impaired insulin secretion, and metabolic complications in diabetic patients. Probiotics are defi ned as live microorganisms that, when ingested in adequate amounts, exert health benefi ts to the host. Probiotics can increase insulin sensitivity and reduce autoimmune responses by modulating intestinal microbiota and decreasing the infl ammatory reactions and oxidative stress. Recent evidences show that the intestinal microbiota infl uences the host through modulating intestinal permeability and mucosal immune response, manipulating eating behaviors by appetite-regulating hormones, including agouti related protein (AgRP), glucagon like peptide-1 (GLP-1) and neuropeptide Y, and controlling gut endocannabinoid (eCB) system which is now believed to be associated with infl ammation and diabetes. Moreover, intestinal microbiota control the host metabolism by affecting energy extraction from food and by biochemically converting molecules derived from the host or from gut microbes themselves. Experimental studies and clinical trials support the hypothesis that the modulation of the intestinal microbiota by probiotics, especially Lactobacillus and Bifidobacterium strains may be effective in prevention and management of diabetes. This review will highlight the current evidences in probiotic effectiveness and future prospects for exploring probiotic therapy in prevention and control of diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1024/0300-9831/a000273DOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
20
modulating intestinal
8
diabetes
6
intestinal
6
microbiota
6
diabetes management
4
probiotics
4
management probiotics
4
probiotics current
4
current knowledge
4

Similar Publications

Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders.

Sci Rep

January 2025

Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.

Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated.

View Article and Find Full Text PDF

Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis.

Nat Metab

January 2025

Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.

View Article and Find Full Text PDF

Host metabolism balances microbial regulation of bile acid signalling.

Nature

January 2025

Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.

Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.

View Article and Find Full Text PDF

After allogeneic HSCT (allo-HSCT), the diversity of the intestinal microbiota significantly decreases. The changes can be rapid and are thought to be caused by chemotherapy, antibiotics, or intestinal inflammation. Most patients are exposed to prophylactic and therapeutic antibiotics during neutropenia and several patients are colonized by ESBL bacteria.

View Article and Find Full Text PDF

Influence of selected dosages of plastic microparticles on the porcine fecal microbiome.

Sci Rep

January 2025

Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.

Studies conducted so far have shown that nano- and microplastic may disturb the intestinal microenvironment by interacting with the intestinal epithelium and the gut microbiota. Depending on the research model used, the effect on the microbiome is different-an increase or decrease in selected taxa resulting in the development of dysbiosis. Dysbiosis may be associated with intestinal inflammation, development of mental disorders or diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!