1. The disposition and metabolism of galunisertib (LY2157299 monohydrate, a TGF-βRI Kinase/ALK5 Inhibitor) was characterized following a single oral dose of 150 mg of [C]-galunisertib (100 µCi) to six healthy human subjects. 2. The galunisertib plasma half-life was 8.6 h, while the C half-life was 10.0 h. Galunisertib was abundant in circulation (40.3% of the C AUC024 h), with 7 additional metabolites detected in plasma. Two metabolites LSN3199597 (M5, mono-oxidation), and M4 (glucuronide of M3) were the most abundant circulating metabolites (10.7 and 9.0% of the 14C AUC024 h respectively). The pharmacological activity of LSN3199597 was tested and found to be significantly less potent than galunisertib. 3. The dose was recovered in feces (64.5%) and in urine (36.8%). Galunisertib was cleared primarily by metabolism, based on low recovery of parent in excreta (13.0% of dose). Due to the slow in vitro metabolism of galunisertib in suspended hepatocytes, a long term hepatocyte system was used to model the human excretion profile. 4. Expressed cytochromes P450 and hepatocytes indicated clearance was primarily CYP3A4-mediated. Mechanistic static modeling that incorporated small non-CYP-mediated metabolic clearance and renal clearance components predicted an AUC ratio of 4.7 for the effect of itraconazole, a strong CYP3A4 inhibitor, on galunisertib.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00498254.2017.1323137 | DOI Listing |
Arthritis Rheumatol
January 2025
Assistant Professor of Pathology and of Microbiology and Microbiology and Immunology, Stanford University, Stanford, CA, 94305.
Humans develop hyperuricemia via decreased urate elimination and excess urate production, consequently promoting monosodium urate crystal deposition and incident gout. Normally, approximately two thirds of urate elimination is renal. However, chronic kidney disease (CKD) and other causes of decreased renal urate elimination drive hyperuricemia in most with gout.
View Article and Find Full Text PDFNat Commun
January 2025
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China.
Mitochondrial morphology and function are intrinsically linked, indicating the opportunity to predict functions by analyzing morphological features in live-cell imaging. Herein, we introduce MoDL, a deep learning algorithm for mitochondrial image segmentation and function prediction. Trained on a dataset of 20,000 manually labeled mitochondria from super-resolution (SR) images, MoDL achieves superior segmentation accuracy, enabling comprehensive morphological analysis.
View Article and Find Full Text PDFInt J Pharm
January 2025
Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium. Electronic address:
The widespread prevalence of colorectal cancer and its high mortality rate emphasize the urgent need for more effective therapies. When developing new drug products, a key aspect is ensuring that sufficiently high concentrations of the active drug are reached at the site of action. Drug transporters and drug-metabolizing enzymes can significantly influence the absorption and local accumulation of drugs in intestinal tissue.
View Article and Find Full Text PDFClin Pharmacol Ther
January 2025
Clinical Pharmacology, Pfizer R&D, Pfizer Inc, New York, New York, USA.
Rifampicin is a widely employed index inhibitor to assess the impact of organic anion transporting polypeptide 1B (OATP1B) inhibition on investigational drugs. The observation of nitrosamines in certain drug products, including rifampicin, has impacted the conduct of clinical drug-drug interaction (DDI) studies with rifampicin drug products. Cyclosporine is a recommended alternative to assess in vivo OATP1B activity; however, challenges exist in its use due to pharmacokinetic (PK) variability and non-selective inhibition of other drug disposition mechanisms.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Aims: To compare the probability of achieving diabetes remission in individuals with different phenotypes of insulin sensitivity, insulin secretion, and beta cell function and further detect the effects of diet, exercise, and lifestyle education intervention on these indexes.
Methods: Three-hundred and one participants who had glycated haemoglobin (HbA1c) data at baseline and after intervention were included for this post hoc analysis. We used the multi-way analysis of variance to assess the differences between the diabetes remission and non-remission groups or between intervention groups in changes of the indexes of insulin sensitivity, insulin secretion, and beta cell function.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!