This work considers the nature of the intermolecular hydrogen bond in a series of 15 different complexes with OH donor groups and N, O, P, or S acceptor atoms. To complement the existing literature, room-temperature gas-phase vibrational spectra of the methanol-pyridine, ethanol-pyridine, and 2,2,2-trifluoroethanol-pyridine complexes were recorded. These complexes were chosen, as they exhibit hydrogen bonds of intermediate strength as compared to previous investigations that involved strong or weak hydrogen bonds. Non Covalent Interactions (NCI) theory was used to calculate various properties of the intermolecular hydrogen bonds, which were compared to the experimental OH-stretching vibrational red shifts. We find that the experimental OH-stretching red shifts correlate strongly with the kinetic energy density integrated within the reduced density gradient volume that describes a hydrogen bond [G(s)]. Given that vibrational red shifts are commonly used as a metric of the strength of a hydrogen bond, this suggests that G(s) could be used as a predictor of hydrogen bonding strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.7b02523 | DOI Listing |
Biochemistry
January 2025
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Chemistry, College of Science, University of Diyala, Baquba, Diyala, Iraq.
The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.
View Article and Find Full Text PDFChempluschem
January 2025
Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, 2-1-1 Katahira, Aoba-ku, 9808577, Sendai, JAPAN.
Organic hydrides can store hydrogen via chemical bonding under ambient conditions, enabling the safe storage and transportation of hydrogen gas using the same infrastructure for gasoline. However, in previous research, most organic hydrides have been produced from petroleum, and therefore replacing them with earth-abundant or renewable compounds is essential to ensure sustainability. This study demonstrates dihydrolevoglucosenone (CyreneTM), which is a biodegradable liquid ketone that is produced directly from biomass without pretreatments on an industrial scale, as a new renewable organic hydride.
View Article and Find Full Text PDFJ Mol Model
January 2025
Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.
Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!