Addition of hydroxyl radicals to the C8 position of 2'-deoxyguanosine generates an 8-hydroxyguanyl radical that can be converted into either 8-oxo-7,8-dihydro-2'-deoxyguanosine or N-(2-deoxy-d-pentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine) (Fapy-dG). The Fapy-dG adduct can adopt different conformations and in particular, can exist in an unnatural α anomeric configuration in addition to canonical β configuration. Previous studies reported that in 5'-TGN-3' sequences, Fapy-dG predominantly induced G → T transversions in both mammalian cells and Escherichia coli, suggesting that mutations could be formed either via insertion of a dA opposite the 5' dT due to primer/template misalignment or as result of direct miscoding. To address this question, single-stranded vectors containing a site-specific Fapy-dG adduct were generated to vary the identity of the 5' nucleotide. Following vector replication in primate cells (COS7), complex mutation spectra were observed that included ∼3-5% G → T transversions and ∼14-21% G → A transitions. There was no correlation apparent between the identity of the 5' nucleotide and spectra of mutations. When conditions for vector preparation were modified to favor the β anomer, frequencies of both G → T and G → A substitutions were significantly reduced. Mutation frequencies in wild-type E. coli and a mutant deficient in damage-inducible DNA polymerases were significantly lower than detected in COS7 and spectra were dominated by deletions. Thus, mutagenic bypass of Fapy-dG can proceed via mechanisms that are different from the previously proposed primer/template misalignment or direct misinsertions of dA or dT opposite to the β anomer of Fapy-dG. Environ. Mol. Mutagen. 58:182-189, 2017. © 2017 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476229 | PMC |
http://dx.doi.org/10.1002/em.22089 | DOI Listing |
NAR Mol Med
April 2024
Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA.
Increased risk for the development of hepatocellular carcinoma (HCC) is driven by a number of etiological factors including hepatitis viral infection and dietary exposures to foods contaminated with aflatoxin-producing molds. Intracellular metabolic activation of aflatoxin B (AFB) to a reactive epoxide generates highly mutagenic AFB-Fapy-dG adducts. Previously, we demonstrated that repair of AFB-Fapy-dG adducts can be initiated by the DNA glycosylase NEIL1 and that male mice were significantly more susceptible to AFB-induced HCC relative to wild-type mice.
View Article and Find Full Text PDFJ Biol Chem
August 2023
Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
Chemistry
January 2022
Department of Medicinal Chemistry, College of Pharmacy, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA.
Metabolic activation of the human carcinogen 1,3-butadiene (BD) by cytochrome 450 monooxygenases gives rise to a genotoxic diepoxide, 1,2,3,4-diepoxybutane (DEB). This reactive electrophile alkylates guanine bases in DNA to produce N7-(2-hydroxy-3,4-epoxy-1-yl)-dG (N7-DE-dG) adducts. Because of the positive charge at the N7 position of the purine heterocycle, N7-DEB-dG adducts are inherently unstable and can undergo spontaneous depurination or base-catalyzed imidazole ring opening to give N -[2-deoxy-D-erythro-pentofuranosyl]-2,6-diamino-3,4-dihydro-4-oxo-5-N-1-(oxiran-2-yl)propan-1-ol-formamidopyrimidine (DEB-FAPy-dG) adducts.
View Article and Find Full Text PDFDNA Repair (Amst)
December 2021
Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA. Electronic address:
Fapy•dG and 8-OxodGuo are formed in DNA from a common N7-dG radical intermediate by reaction with hydroxyl radical. Although cellular levels of Fapy•dG are often greater, its effects on replication are less well understood than those of 8-OxodGuo. In this study plasmid DNA containing Fapy•dG in three mutational hotspots of human cancers, codons 248, 249, and 273 of the p53 tumor suppressor gene, was replicated in HEK 293T cells.
View Article and Find Full Text PDFDNA Repair (Amst)
May 2019
Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States. Electronic address:
Chronic dietary exposure to aflatoxin B (AFB), concomitant with hepatitis B infection is associated with a significant increased risk for hepatocellular carcinomas (HCCs) in people living in Southeast Asia and sub-Saharan Africa. Human exposures to AFB occur through the consumption of foods that are contaminated with pervasive molds, including Aspergillus flavus. Even though dietary exposures to aflatoxins constitute the second largest global environmental risk factor for cancer development, there are still significant questions concerning the molecular mechanisms driving carcinogenesis and what factors may modulate an individual's risk for HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!