The DNA damage response (DDR) plays a pivotal role in maintaining genome integrity. DNA damage and DDR activation are observed in the failing heart, however, the type of DNA damage and its role in the pathogenesis of heart failure remain elusive. Here we show the critical role of DNA single-strand break (SSB) in the pathogenesis of pressure overload-induced heart failure. Accumulation of unrepaired SSB is observed in cardiomyocytes of the failing heart. Unrepaired SSB activates DDR and increases the expression of inflammatory cytokines through NF-κB signalling. Pressure overload-induced heart failure is more severe in the mice lacking XRCC1, an essential protein for SSB repair, which is rescued by blocking DDR activation through genetic deletion of ATM, suggesting the causative role of SSB accumulation and DDR activation in the pathogenesis of heart failure. Prevention of SSB accumulation or persistent DDR activation may become a new therapeutic strategy against heart failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413978PMC
http://dx.doi.org/10.1038/ncomms15104DOI Listing

Publication Analysis

Top Keywords

heart failure
24
dna damage
16
ddr activation
16
dna single-strand
8
damage response
8
heart
8
failing heart
8
pathogenesis heart
8
pressure overload-induced
8
overload-induced heart
8

Similar Publications

Type 2 diabetes (T2D) frequently coexists with cardiorenal complications. Therefore, a holistic approach to patient management is required, with specialists such as primary care physicians, cardiologists, endocrinologists, and nephrologists working together to provide patient care. Although glycemic control is important in the management of T2D, patients with T2D and acceptable glycemic control are still at risk from cardiovascular (CV) events such as stroke, heart attack, and heart failure (HF).

View Article and Find Full Text PDF

Background: Interventricular dyssynchrony derived from the classic non-physiological stimulation (n-PS) of the right ventricle (RV) is a known cause of left ventricular dysfunction (LVDys).

Methods: This was a prospective descriptive single-center study. We analyzed patients who develop LVDys with n-PS, and the results after upgrading to conduction system pacing (CSP).

View Article and Find Full Text PDF

Left atrial strain (LAS) was recently introduced as a parameter that reflects on left atrial function. Consequently, changes in LAS can inform the development of cardiovascular diseases, hence providing a window for non-invasive and cost-effective testing of these diseases and their complications at early stages of development, potentially offering a segway towards preventive interventions. LAS has yet to be implemented into standard practice.

View Article and Find Full Text PDF

Background: Little is known about how younger and older hospitalized patients differ with respect to reasons for admission, comorbidities, diagnostics, treatment and intercurrent problems.

Objective: The aim of the study was to compare the previously named characteristics in the clinical profile of patients > 90 years old (nonagenarians) with a control group of patients 70-75 years old admitted to an emergency hospital department for internal medicine and cardiology.

Material And Method: The study included all consecutive nonagenarians and gender-matched control patients who were admitted during 2011.

View Article and Find Full Text PDF

Background: Noninferiority of omitting intraoperative defibrillation threshold (DFT) testing has been documented for transvenous implantable cardioverter defibrillators (ICD) whereas data for the subcutaneous-ICD (S-ICD) regarding the need for DFT testing, especially during S-ICD generator replacement, is not available.

Methods: A total of 112 consecutive patients who underwent S-ICD generator replacement and routine testing were included in this retrospective single-center study and analyzed regarding the outcome of intraoperative DFT.

Results: The majority of patients (87.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!