A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Toward the Automation of Diagnostic Conversation Analysis in Patients with Memory Complaints. | LitMetric

Background: The early diagnosis of dementia is of great clinical and social importance. A recent study using the qualitative methodology of conversation analysis (CA) demonstrated that language and communication problems are evident during interactions between patients and neurologists, and that interactional observations can be used to differentiate between cognitive difficulties due to neurodegenerative disorders (ND) or functional memory disorders (FMD).

Objective: This study explores whether the differential diagnostic analysis of doctor-patient interactions in a memory clinic can be automated.

Methods: Verbatim transcripts of conversations between neurologists and patients initially presenting with memory problems to a specialist clinic were produced manually (15 with FMD, and 15 with ND). A range of automatically detectable features focusing on acoustic, lexical, semantic, and visual information contained in the transcripts were defined aiming to replicate the diagnostic qualitative observations. The features were used to train a set of five machine learning classifiers to distinguish between ND and FMD.

Results: The mean rate of correct classification between ND and FMD was 93% ranging from 97% by the Perceptron classifier to 90% by the Random Forest classifier.Using only the ten best features, the mean correct classification score increased to 95%.

Conclusion: This pilot study provides proof-of-principle that a machine learning approach to analyzing transcripts of interactions between neurologists and patients describing memory problems can distinguish people with neurodegenerative dementia from people with FMD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-160507DOI Listing

Publication Analysis

Top Keywords

conversation analysis
8
neurologists patients
8
memory problems
8
machine learning
8
correct classification
8
memory
5
automation diagnostic
4
diagnostic conversation
4
patients
4
analysis patients
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!