In external beam radiation therapy (EBRT), skin dose measurement is important to evaluate dose coverage of superficial target volumes. Treatment planning systems (TPSs) are often inaccurate in this region of the patient, so in vivo measurements are necessary for skin surface dose estimation. In this work, superficial dose distributions were measured using radiochromic translucent poly(vinyl alcohol) cryogels. The cryogels simultaneously served as bolus material, providing the necessary buildup to achieve the desired superficial dose. The relationship between dose to the skin surface and dose measured with the bolus was established using a series of oblique irradiations with gantry angles ranging from 0° to 90°. EBT-2 Gafchromic film was placed under the bolus, and the ratio of bolus-film dose was determined ranging from 0.749 ± 0.005 to 0.930 ± 0.002 for 0° and 90° gantry angles, respectively. The average ratio over 0-67.5° (0.800 ± 0.064) was used as the single correction factor to convert dose in bolus to dose to the skin surface. The correction factor was applied to bolus measurements of skin dose from head and neck intensity-modulated radiation therapy (IMRT) treatments delivered to a RANDO phantom. The resulting dose distributions were compared to film measurements using gamma analysis with a 3%/3 mm tolerance and a 10% threshold. The minimum gamma pass rate was 95.2% suggesting that the radiochromic bolus may provide an accurate estimation of skin surface dose using a simple correction factor. This study demonstrates the suitability of radiochromic cryogels for superficial dose measurements in megavoltage photon beams.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689842 | PMC |
http://dx.doi.org/10.1002/acm2.12087 | DOI Listing |
J Clin Med
December 2024
Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
The autoimmune/inflammatory syndrome induced by adjuvants (ASIA) is a rare condition caused by an immune response associated with over-reactivity of the immune system, triggered by adjuvants. The most common adjuvants are aluminium salts but can also be bioimplants or infectious agents. It may lead to the development of various autoimmunologic diseases.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.
Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip "hotspot".
View Article and Find Full Text PDFMolecules
December 2024
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
Ligand fishing is a promising strategy for the screening of active ingredients from complex natural products. In this work, human tyrosinase (hTYR) was displayed on the surface of Chinese hamster ovary (CHO) cells for the first time; it was then used as bait to develop a new method for ligand fishing. The localization of hTYR on the CHO cell surface was verified by an enzyme activity test and fluorescence microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!