Costunolide increases osteoblast differentiation via ATF4-dependent HO-1 expression in C3H10T1/2 cells.

Life Sci

Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea; Institute of Industrial and Technology, Daegu University, Gyeongbuk 38453, Republic of Korea. Electronic address:

Published: June 2017

Aims: Costunolide is a sesquiterpene lactones used in many herbal medicines, with well-established anti-inflammatory and anti-oxidant functions modulating endoplasmic reticulum (ER) stress pathways, and which promotes the expression of anti-oxidant genes. The aim of this study is to investigate whether costunolide is involved in osteoblast differentiation and, determine the mechanisms of differentiation in mesenchymal stem cells.

Main Methods: The cytotoxicity of costunolide was identified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mRNA and protein expression levels of osteogenic genes were determined by RT-PCR and Western blot analysis. Alkaline phosphate (ALP) staining and Alizarin red S (ARS) staining were performed to evaluate ALP activity and matrix mineralization. Transcriptional activity was detected using a luciferase reporter assay.

Key Findings: In this study, we determined that costunolide increased the expression of distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC) in C3H10T 1/2 cells. Furthermore, costunolide increased ALP activity and matrix mineralization. Interestingly, costunolide increased ER stress by Bip, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). However, it did not exert effects on expression of activating transcription factor 6 (ATF6). ATF4 activation has a protective role in oxidative stress, and its transcription induces anti-oxidant genes in cells. Heme oxygenase-1 (HO-1) is a major anti-oxidant enzyme, and is regulated by ATF4. We showed that costunolide treatment increased HO-1 expression. Furthermore, the HO-1 inhibitor, Sn(IV) Protoporphyrin IX dichloride (SnPP) was blocked costunolide-induced Runx2 expression.

Significance: Our results revealed that costunolide-induced osteoblast differentiation is regulated by ATF4-dependent HO-1 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2017.04.012DOI Listing

Publication Analysis

Top Keywords

osteoblast differentiation
12
ho-1 expression
12
costunolide increased
12
transcription factor
12
costunolide
8
atf4-dependent ho-1
8
anti-oxidant genes
8
alp activity
8
activity matrix
8
matrix mineralization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!