Effect of rat spinal cord injury (hemisection) on the ex vivo uptake and release of [H]noradrenaline from a slice preparation.

Brain Res Bull

Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.

Published: May 2017

We measured the ex vivo uptake and release of [H]noradrenaline ([H]NA) from perfused rat spinal cord slice preparations at 1, 3 and 14days after unilateral hemisection-induced spinal cord injury (SCI) compared with control slice preparations. After surgical hemisection under anaesthesia, the rats showed characteristic signs of hemiplegia, with no movement of the ipsilateral hindlimb. After 3days, the electron microscopy images showed overall degeneration of neuronal organelles and the myelin sheath, but the synapses seemed to be intact. In ex vivo experiments, the spinal cord injury did not influence uptake but increased [H]NA release at rest and in response to axonal stimulation. The effect of a selective noradrenaline reuptake inhibitor, nisoxetine, was studied to identify the mechanisms underlying the increase in NA release. Nisoxetine potentiated stimulation-evoked [H]NA release from the non-injured tissue, but it gradually lost its effectiveness after injury, depending on the time (1 and 3days) elapsed after hemisection, indicating that the noradrenaline transporter binding sites of the terminals become impaired after decentralisation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2017.04.007DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
cord injury
12
rat spinal
8
vivo uptake
8
uptake release
8
release [h]noradrenaline
8
slice preparations
8
[h]na release
8
release
5
cord
4

Similar Publications

Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells.

Front Immunol

January 2025

Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.

An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.

View Article and Find Full Text PDF

Objective: This study aimed to elucidate the clinical manifestations, laboratory findings and outcomes of patients with intravascular large B cell lymphoma (IVLBCL) with neurological involvement and to differentiate IVLBCL with and without neurological involvement.

Methods: A cohort study was conducted at Siriraj Hospital, Mahidol University, Thailand, between January 2005 and September 2024. Clinical data, laboratory values and central nervous system imaging results were analysed.

View Article and Find Full Text PDF

Here, we present a case of Guillain-Barré syndrome (GBS) that mimicked brain death. A 66-year-old lady with a medical history of breast cancer (now receiving hormone therapy), hypertension, and hypothyroidism, presented to the emergency department. The patient was admitted to the neuro ICU with absent brainstem and spinal cord responses, concerning for possible brain death.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.

View Article and Find Full Text PDF

Background: Tuberculosis is among the most devastating infectious diseases worldwide. Spinal tuberculosis is not easy to detect at an early stage, which without effective treatment often leads to spinal deformity and spinal cord damage which in turn cause complications such as paraplegia and quadriplegia. In this study, we established a model using three concentrations of bacteria and carried out a comprehensive evaluation of the model by imaging, general observations, and histopathological and bacteriological studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!