Diabetes is a leading cause of renal disease. Glomerular mesangial expansion and fibrosis are hallmarks of diabetic nephropathy and this is thought to be promoted by infiltration of circulating macrophages. Monocyte chemoattractant protein-1 (MCP-1) has been shown to attract macrophages in kidney diseases. P2X7 receptors (P2X7R) are highly expressed on macrophages and are essential components of pro-inflammatory signaling in multiple tissues. Here we show that in diabetic patients, renal P2X7R expression is associated with severe mesangial expansion, impaired glomerular filtration (≤40ml/min/1.73sq.m.), and increased interstitial fibrosis. P2X7R activation enhanced the release of MCP-1 in human mesangial cells cultured under high glucose conditions. In mice, P2X7R-deficiency prevented glomerular macrophage attraction and collagen IV deposition; however, the more severe interstitial inflammation and fibrosis often seen in human diabetic kidney diseases was not modelled. Finally, we demonstrate that a P2X7R inhibitor (AZ11657312) can reduce renal macrophage accrual following the establishment of hyperglycemia in a model of diabetic nephropathy. Collectively these data suggest that P2X7R activation may contribute to the high prevalence of kidney disease found in diabetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440600 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2017.04.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!