Phosphoribulokinase (PRK) is a key enzyme in the Calvin cycle of autotrophic organisms. We have constructed a spinach leaf cDNA library in the phage expression vector, lambda gt11, and used a rabbit polyclonal antibody raised against spinach PRK to identify PRK clones. Analyses of the nucleotide sequences of two antibody-positive clones, 1.47 and 1.35 kb in length, showed that they encode a protein which contains the N-terminal amino acid (aa) sequence [Porter et al., Arch. Biochem. Biophys. 245 (1986) 14-23] of mature spinach PRK. The codon for the N-terminal serine of the mature protein occurs 170 bp from the 5' end of the open reading frame (ORF), suggesting that PRK is synthesized with a rather long transit peptide which is removed from the mature enzyme. The ORF, ending with an amber (TAG) codon at position 1054, predicts a mature enzyme of 351 aa with a calculated Mr of 39232.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-1119(88)90224-7DOI Listing

Publication Analysis

Top Keywords

spinach prk
8
mature enzyme
8
mature
5
prk
5
cloning sequencing
4
sequencing cdna
4
cdna encoding
4
encoding mature
4
mature form
4
form phosphoribulokinase
4

Similar Publications

Thioredoxin-dependent regulation of photosynthetic glyceraldehyde-3-phosphate dehydrogenase: autonomous vs. CP12-dependent mechanisms.

Photosynth Res

September 2006

Laboratory of Molecular Plant Physiology, Department of Evolutionary Experimental Biology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy.

Regulation of the Calvin-Benson cycle under varying light/dark conditions is a common property of oxygenic photosynthetic organisms and photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the targets of this complex regulatory system. In cyanobacteria and most algae, photosynthetic GAPDH is a homotetramer of GapA subunits which do not contain regulatory domains. In these organisms, dark-inhibition of the Calvin-Benson cycle involves the formation of a kinetically inhibited supramolecular complex between GAPDH, the regulatory peptide CP12 and phosphoribulokinase.

View Article and Find Full Text PDF

Molecular characterization and redox regulation of phosphoribulokinase from the cyanobacterium Synechococcus sp. PCC 7942.

Plant Cell Physiol

March 2003

Department of Applied Biochemistry, Graduate School of Agriculture and Bioscience, Osaka Prefecture University, Gakuen-cho 1-1 Sakai, Osaka, 599-8531 Japan.

We isolated and characterized a gene encoding phosphoribulokinase (PRK) from Synechococcus sp. PCC 7942. The isolated sequence consisted of a 999 bp open reading frame encoding 333 amino acid residues of PRK.

View Article and Find Full Text PDF

Light/dark modulation of the higher plant Calvin-cycle enzymes phosphoribulokinase (PRK) and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (NADP- GAPDH-A2B2) involves changes of their aggregation state in addition to redox changes of regulatory cysteines. Here we demonstrate that plants possess two different complexes containing the inactive forms (a) of NADP-GAPDH and PRK and (b) of only NADP-GAPDH, respectively, in darkened chloroplasts. While the 550-kDa PRK/GAPDH/CP12 complex is dissociated and activated upon reduction alone, activation and dissociation of the 600-kDa A8B8 complex of NADP-GAPDH requires incubation with dithiothreitol and the effector 1,3-bisphosphoglycerate.

View Article and Find Full Text PDF

Despite little supportive data, differential target protein susceptibility to redox regulation by thioredoxin (Trx) f and Trx m has been invoked to account for two distinct Trxs in chloroplasts. However, this postulate has not been rigorously tested with phosphoribulokinase (PRK), a fulcrum for redox regulation of the Calvin cycle. Prerequisite to Trx studies, the activation of spinach PRK by dithiothreitol, 2-mercaptoethanol, and glutathione was examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!