In the present study, sphere-like silver nanoparticles (Ag-NPs) were synthesized by using Camellia japonica leaf extract and its remediation industrial pollutants such as nitrobenzene and Eosin-Y (EY). As-prepared sphere-like Ag-NPs were characterized by various analytical and spectroscopic methods such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), High-resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectra (EDX), and the chemical constituents of the leaf extract were also analyzed by using Gas chromatography and Mass Spectroscopy (GC-MS). Fascinatingly, the as-prepared sphere-like Ag-NPs exhibits excellent electrocatalytic and photocatalytic activity for the reduction of nitrobenzene and photo-degradation of EY dye respectively. The Cyclic voltammetry (CV) and amperometric (i-t) studies realized that the electrochemical behavior of sphere-like Ag-NPs modified electrode on nitrobenzene reduction. The proposed nitrobenzene sensor exhibited appreciable wide linear response range and low detection limit of 0.05-21μM, 23-2593μM and 12nM, respectively. The Ag-NPs modified electrode showed excellent selectivity towards the nitrobenzene detection even in the presence of common metal ions and nitroaromatic containing substances. On the other hand, Ag-NPs have excellent photocatalytic activity with >97% degradation of EY dye after irradiated 60min. These results indicated that the growth of sphere-like Ag-NPs should be a proficient.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2017.03.018DOI Listing

Publication Analysis

Top Keywords

sphere-like ag-nps
16
leaf extract
12
silver nanoparticles
8
camellia japonica
8
japonica leaf
8
reduction nitrobenzene
8
as-prepared sphere-like
8
photocatalytic activity
8
ag-nps modified
8
modified electrode
8

Similar Publications

The preparation of visible light-responsive efficient photocatalysts for removing organic contaminants from water and killing cancer cells has gotten a lot of attention due to the growing global concern. In this study, we have successfully fabricated an efficient AgBr/β-MnO nanocomposite via a facile deposition and precipitation method at room temperature. Techniques such as XRD, SEM-EDS, TEM, DRS, PL, EIS, ESR, and FTIR were used to determine the crystalline, structural, morphological, optical, and other properties.

View Article and Find Full Text PDF

Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies.

J Photochem Photobiol B

December 2017

UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa; Nanosciences African network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province, South Africa.

Green synthesis of silver nanoparticles (Ag NPs) using an extract of dried Zingiber officinale (ginger) root as a reducing and capping agent in the presence of microwave irradiation was herein reported for the first time. The formation of symmetrical spheres is confirmed from the UV-Visible spectrum of Ag NPs. Fourier transform infra-red spectroscopy confirms the formation of the Ag NPs.

View Article and Find Full Text PDF

In the present study, sphere-like silver nanoparticles (Ag-NPs) were synthesized by using Camellia japonica leaf extract and its remediation industrial pollutants such as nitrobenzene and Eosin-Y (EY). As-prepared sphere-like Ag-NPs were characterized by various analytical and spectroscopic methods such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), High-resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectra (EDX), and the chemical constituents of the leaf extract were also analyzed by using Gas chromatography and Mass Spectroscopy (GC-MS). Fascinatingly, the as-prepared sphere-like Ag-NPs exhibits excellent electrocatalytic and photocatalytic activity for the reduction of nitrobenzene and photo-degradation of EY dye respectively.

View Article and Find Full Text PDF

Antibacterial activity of silver nanoparticles synthesized from serine.

Mater Sci Eng C Mater Biol Appl

April 2015

Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025, India.

Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!