Alternative promoter usage, alternative splicing and alternative cleavage/polyadenylation (referred here as to alternative transcription and splicing) are main instruments to diversify the transcriptome from a limited set of genes. There is a good deal of evidence that chemotherapeutic drugs affect these processes, but the therapeutic incidence of these effects is poorly documented. The scope of this study is to review the impact of chemotherapy on alternative transcription and splicing and to discuss potential implications in cancer therapy. A literature survey identified >2200 events induced by chemotherapeutic drugs. The molecular pathways involved in these regulations are briefly discussed. The GO terms associated with the alternative transcripts are mainly related to cell cycle/division, mRNA processing, DNA repair, macromolecules catabolism and chromatin. A large fraction (43%) of transcripts are also related to the new hallmarks of cancer, mostly genetic instability and replicative immortality. Finally, we ask the question of the impact of alternative transcription and splicing on drug efficacy and of the possible curative benefit of combining chemotherapy and pharmaceutical regulation of this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2017.04.006 | DOI Listing |
Sci Rep
December 2024
Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.
View Article and Find Full Text PDFBMC Genomics
December 2024
School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China.
Background: Discontinuous transcription allows coronaviruses to efficiently replicate and transmit within host cells, enhancing their adaptability and survival. Assembling viral transcripts is crucial for virology research and the development of antiviral strategies. However, traditional transcript assembly methods primarily designed for variable alternative splicing events in eukaryotes are not suitable for the viral transcript assembly problem.
View Article and Find Full Text PDFImmunology
December 2024
Division of Molecular Medicine, Bose Institute, Kolkata, India.
The host immune system is adapted in a variety of ways by tumour microenvironment and growing tumour interacts to promote immune escape. One of these adaptations is manipulating the metabolic processes of cells in the tumour microenvironment. The growing tumour aggressively utilise glucose, its primary energy source available in tumour site, and produce lactate by Warburg effect.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
Background: Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes.
View Article and Find Full Text PDFBio Protoc
December 2024
Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Sterol regulatory element binding proteins (SREBPs) are transcription factors that reside in the endoplasmic reticulum (ER) membrane as inactive precursors. To be active, SREBPs are translocated to the Golgi where the transcriptionally active N-terminus is cleaved and released to the nucleus to regulate gene expression. Nuclear SREBP levels can be determined by immunoblot analysis; however, this method can only determine the steady-state levels of nuclear SREBPs and does not capture the actual status of activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!