Unlabelled: Hydrogen sulfide (H S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H S was not clear. Recently, a novel post-translational modification induced by H S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca channels, transient receptor potential channels and ATP-sensitive K channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H S-related drugs in the future.
Linked Articles: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866969 | PMC |
http://dx.doi.org/10.1111/bph.13825 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!