In glioblastoma several histone demethylase genes (KDM) are overexpressed compared to normal brain tissue and the development of Temozolomide (TMZ) resistance is accompanied by the transient further increased expression of KDM5A and other KDMs following a mechanism that we defined as "epigenetic resilience". We hypothesized that targeting KDMs may kill the cells that survive the cytotoxic therapy.We determined the effect of JIB 04 and CPI-455, two KDM inhibitors, on glioblastoma cells and found that both molecules are more effective against TMZ-resistant rather than native cells.Because of its lower IC50, we focused on JIB 04 that targets KDM5A and other KDMs as well. We have shown that this molecule activates autophagic and apoptotic pathways, interferes with cell cycle progression, inhibits cell clonogenicity and dephosphorylates Akt thus inactivating a potent pro-survival pathway. We performed combination temozolomide/JIB 04 in vitro treatments showing that these two molecules, under certain conditions, have a strong synergic effect and we hypothesize that JIB 04 intercepts the cells that escape the G2 block exerted by TMZ. Finally we studied the permeability of JIB 04 across the blood-brain barrier and found that this molecule reaches bioactive concentration in the brain; furthermore a pilot in vivo experiment in an orthotopic GB xenograft model showed a trend toward longer survival in treated mice with an Hazard Ratio of 0.5.In conclusion we propose that the combination between cytotoxic drugs and molecules acting on the epigenetic landscape may offer the opportunity to develop new therapies for this invariably lethal disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471020PMC
http://dx.doi.org/10.18632/oncotarget.16820DOI Listing

Publication Analysis

Top Keywords

histone demethylase
8
demethylase genes
8
glioblastoma cells
8
kdm5a kdms
8
small molecules
4
molecules targeting
4
targeting histone
4
kdms
4
genes kdms
4
kdms inhibit
4

Similar Publications

Background: Detecting and treating stomach cancer requires a comprehensive understanding of how gastric cancer develops and progresses. In this context, efforts have been made to elucidate the regulation of glutamine-fructose-6-phosphate transaminase 1 () and Lysine demethylase 4C () in gastric cancer.

Methods: Bioinformatics was utilized to predict the levels and correlation of and in gastric cancer, followed by determining their expressions via quantitative real-time polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Kabuki syndrome: a comprehensive clinical portrait and genetic insight.

BMJ Case Rep

December 2024

Facultad de Medicina, Universidad Anahuac Cancun, Cancún, Quintana Roo, Mexico

This report details the case of a preadolescent female patient diagnosed with Kabuki syndrome, a rare genetic disorder characterised by distinctive facial features, growth delay and cognitive impairment. The patient's medical history includes perinatal complications, alongside challenges in developmental milestones, feeding and psychomotor skills since infancy, prompting further investigation. Genetic testing confirmed the diagnosis, revealing a full deletion of The patient underwent a multidisciplinary approach, addressing various aspects of her condition, which resulted in significant improvements in several areas.

View Article and Find Full Text PDF

Senescence and osteogenic differentiation potential loss limited bone nonunion treatment effects of bone marrow-derived mesenchymal stem cells (BMSCs). MiR-100-5p/Lysine(K)-specific demethylase 6B (KDM6B) can inhibit osteogenesis, but their effects on bone union remain unclear. This study aims to investigate the effects of miR-100-5p/KDM6B on osteogenic differentiation and bone defects.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalen degenerative joint disease with no FDA-approved therapies that can halt or reverse its progression. Current treatments address symptoms like pain and inflammation, but not underlying disease mechanisms. OA progression is marked by increased inflammation and extracellular matrix (ECM) degradation of the joint cartilage.

View Article and Find Full Text PDF

JMJD3 deficiency disturbs dopamine biosynthesis in midbrain and aggravates chronic inflammatory pain.

Acta Neuropathol Commun

December 2024

Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.

Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!