The low-density lipoprotein receptor-related protein 1 (LRP1) gene is associated with increased levels of plasma factor VIII (FVIII). We aimed to explore eight functional genetic LRP1 variants for their potential roles in regulating FVIII levels and acute ischemic stroke (AIS). This genetic association study enrolled 192 patients with AIS and 134 controls. There were no significant differences in the genetic frequency of the eight functional single-nucleotide polymorphisms (SNPs) between the control and AIS groups. However, while analyzing the association between the eight SNPs and plasma FVIII levels, subjects with T/T genotype of rs1800137 (vs. CC+CT) were found to be associated with higher FVIII levels (23.5IU/dL; 95% confidence interval, 7.4-39.5IU/dL; P=0.0044) after adjusting for age, gender, estimated glomerular filtration rate, O blood type, inflammatory state, and body mass index. An analysis of the mRNA stability and abundance was designed and performed using minigene system transfected into HepG2 cells to assess the possible differences in mRNA stabilities between rs1800137 CC (rs1800137C) and TT (rs1800137T) genotypes. Site-directed mutagenesis revealed that rs1800137T accounts for the observed decrease in mRNA stability. The SNP rs1800137, located in exon 8, has been identified as an exon-splicing enhancer in silico. However, alternative splicing of LRP1 without inclusion of exon 8 was not identified. In transfected HepG2 cells, cycloheximide slowed down the degradation of the rs1800137T-containing minigene. These results demonstrate that synonymous SNP rs1800137 can lead to increased plasma FVIII levels due to decreased mRNA stability via translation-dependent mRNA degradation associated with codon optimality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2017.04.015DOI Listing

Publication Analysis

Top Keywords

mrna stability
16
fviii levels
16
associated increased
8
increased plasma
8
plasma factor
8
factor viii
8
plasma fviii
8
transfected hepg2
8
hepg2 cells
8
snp rs1800137
8

Similar Publications

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Variation of gene ratios in mock communities constructed with purified 16S rRNA during processing.

Sci Rep

December 2024

Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, Travessa 3, n. 380., São Paulo, SP, CEP 05508-900, Brazil.

16S ribosomal nucleic acid (16S rRNA) analysis allows to specifically target the metabolically active members of microbial communities. The stability of the ratios between target genes in the workflow, which is essential for the bioprocess-relevance of the data derived from this analysis, was investigated using synthetic mock communities constructed by mixing purified 16S rRNA from Bacillus subtilis (Bs), Staphylococcus aureus (Sa), Pseudomonas aeruginosa (Pa), Klebsiella pneumoniae (Kp) and Burkholderia cepacia (Bc) in different proportions. The RT reaction yielded one copy of cDNA per rRNA molecule for Pa, Bc and Sa but only 2/3 of the expected cDNA from 16S rRNAs of Bs and Kp.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!