Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is known that solving mental tasks leads to tonic increase in cardiovascular activity. Our previous research showed that tasks involving rule application (RA) caused greater tonic increase in cardiovascular activity than tasks requiring rule discovery (RD). However, it is not clear what brain mechanisms are responsible for this difference. The aim of two experimental studies was to compare the patterns of brain and cardiovascular activity while both RD and the RA numeric tasks were being solved. The fMRI study revealed greater brain activation while solving RD tasks than while solving RA tasks. In particular, RD tasks evoked greater activation of the left inferior frontal gyrus and selected areas in the parietal, and temporal cortices, including the precuneus, supramarginal gyrus, angular gyrus, inferior parietal lobule, and the superior temporal gyrus, and the cingulate cortex. In addition, RA tasks caused larger increases in HR than RD tasks. The second study, carried out in a cardiovascular laboratory, showed greater increases in heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) while solving RA tasks than while solving RD tasks. The results support the hypothesis that RD and RA tasks involve different modes of information processing, but the neuronal mechanism responsible for the observed greater cardiovascular response to RA tasks than to RD tasks is not completely clear.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpsycho.2017.04.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!