Background: The host range of human immunodeficiency virus (HIV) is quite narrow. Therefore, analyzing HIV-1 pathogenesis in vivo has been limited owing to lack of appropriate animal model systems. To overcome this, chimeric simian and human immunodeficiency viruses (SHIVs) that encode HIV-1 Env and are infectious to macaques have been developed and used to investigate the pathogenicity of HIV-1 in vivo. So far, we have many SHIV strains that show different pathogenesis in macaque experiments. However, dynamic aspects of SHIV infection have not been well understood. To fully understand the dynamic properties of SHIVs, we focused on two representative strains-the highly pathogenic SHIV, SHIV-KS661, and the less pathogenic SHIV, SHIV-#64-and measured the time-course of experimental data in cell culture.

Methods: We infected HSC-F with SHIV-KS661 and -#64 and measured the concentration of Nef-negative (target) and Nef-positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for 9 days. The experiments were repeated at two different multiplicities of infection, and a previously developed mathematical model incorporating the infectious and non-infectious viruses was fitted to the full dataset of each strain simultaneously to characterize the infection dynamics of these two strains.

Results And Conclusions: We quantified virological indices including virus burst sizes and basic reproduction number of both SHIV-KS661 and -#64. Comparing the burst size of total and infectious viruses (viral RNA copies and TCID, respectively), we found that there was a statistically significant difference between the infectious virus burst size of SHIV-KS661 and -#64, while there was no significant difference between the total virus burst size. Furthermore, our analyses showed that the fraction of infectious virus among the produced SHIV-KS661 viruses, which is defined as the infectious viral load (TCID/ml) divided by the total viral load (RNA copies/ml), is more than 10-fold higher than that of SHIV-#64 during overall infection (i.e., for 9 days). Taken together, we conclude that the highly pathogenic SHIV produces infectious virions more effectively than the less pathogenic SHIV in cell culture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401468PMC
http://dx.doi.org/10.1186/s12976-017-0055-8DOI Listing

Publication Analysis

Top Keywords

pathogenic shiv
16
viral load
16
highly pathogenic
12
shiv-ks661 -#64
12
virus burst
12
burst size
12
infectious
9
immunodeficiency virus
8
produces infectious
8
infectious virions
8

Similar Publications

Introduction: Rhesus macaques have long been a focus of research for understanding immune responses to human pathogens due to their close phylogenetic relationship with humans. As rhesus macaque antibody germlines show high degrees of polymorphism, the spectrum of database-covered genes expressed in individual macaques remains to be determined.

Methods: Here, four rhesus macaques infected with SHIV became a study of interest because they developed broadly neutralizing antibodies against HIV-1.

View Article and Find Full Text PDF

Cytokine signalling in formation of neutrophil extracellular traps: Implications for health and diseases.

Cytokine Growth Factor Rev

December 2024

Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:

Neutrophils, as essential component of the innate immune response, form a crucial part in the defence mechanisms through the release of extracellular traps (NETs). These web-like structures, composed of chromatin and antimicrobial proteins, are essential for the entrapment and inactivation of pathogens. However, either constitutive formation or inefficient clearance of NETs leads to adverse effects such as fibrosis, thrombosis, delayed wound healing and tissue damage in multiple diseases associated with sterile inflammation.

View Article and Find Full Text PDF

Optical Biosensor for Bacteremia detection from human blood samples at a label-free Liquid Crystal-Aqueous Interface: A Rapid and Point-of-Care approach.

J Colloid Interface Sci

December 2024

Nanocarbon and Sensor Laboratory, Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, India. Electronic address:

Detection of bacteremia requires recognizing bloodstream bacteria. Early identification of bacteremia is imperative for treatment and prevents the escalation to systemic infections like septicaemia. This paper introduces a novel, label-free biosensor based on liquid crystals (LCs), designed to offer rapid and reliable optical detection of blood pathogens without using traditional PCR methods.

View Article and Find Full Text PDF
Article Synopsis
  • Entamoeba histolytica is a protozoan parasite that causes amoebiasis, a major global health issue, with complex mechanisms of virulence including endocytic processes and motility.
  • Two kinases from the AGCK family, EhAGCK1 and EhAGCK2, have been studied, revealing that EhAGCK1 is specifically involved in trogocytosis while EhAGCK2 is engaged in all actin-dependent endocytic processes.
  • The research highlights the distinct biochemical properties of these kinases, including their ion dependency and substrate specificity, and emphasizes their unique roles in related endocytic processes such as trogocytosis and phagocytosis.
View Article and Find Full Text PDF

Inflammation is an early immune response against invading pathogens and damaged tissue. Although beneficial, uncontrolled inflammation leads to various diseases including cancer in a chronic setting. Peroxynitrite (PN) is a major reactive nitrogen species generated during inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!