Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398965 | PMC |
http://dx.doi.org/10.1186/s11671-017-2065-1 | DOI Listing |
MXenes, a rapidly emerging class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted significant attention for their outstanding properties, including high electrical conductivity, tunable work function, and solution processability. These characteristics have made MXenes highly versatile and widely adopted in the next generation of optoelectronic devices, such as perovskite and organic solar cells. However, their integration into silicon-based optoelectronic devices remains relatively underexplored, despite silicon's dominance in the semiconductor industry.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan, People's Republic of China.
Silicon germanium alloy materials have promising potential applications in the optoelectronic and photovoltaic industries due to their good electronic properties. However, due to the inherent brittleness of semiconductor materials, they are prone to rupturing under harsh working environments, such as high stress or high temperature. Here, we conducted a systematic search for silicon germanium alloy structures using a random sampling strategy, in combination with group theory and graph theory (RG), and 12 stable SiGe structures in 2-8 stacking orders were predicted.
View Article and Find Full Text PDFMater Horiz
January 2025
Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
Quantum dots have garnered significant interest in perovskite solar cells (PSCs) due to their stable chemical properties, high carrier mobility, and unique features such as multiple exciton generation and excellent optoelectronic characteristics resulting from quantum confinement effects. This review explores quantum dot properties and their applications in photoelectronic devices, including their synthesis and deposition processes. This sets the stage for discussing their diverse roles in the carrier transport, absorber, and interfacial layers of PSCs.
View Article and Find Full Text PDFNanoscale
January 2025
Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J.Thomson Avenue, Cambridge CB3 0HE, UK.
Benefiting from improved stability due to interlayer van der Waals interactions, few-layer fullerene networks are experimentally more accessible compared to monolayer polymeric C. However, there is a lack of systematic theoretical studies on the material properties of few-layer C networks. Here, we compare the structural, electronic and optical properties of bilayer and monolayer fullerene networks.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!