Background: Intrathecal drug delivery is an attractive option to circumvent the blood-brain barrier for pain management through its increased efficacy of pain relief, reduction in adverse side effects, and cost-effectiveness. Unfortunately, there are limited guidelines for physicians to choose infusion or drug pump settings to administer therapeutic doses to specific regions of the spine or the brain. Although empiric trialing of intrathecal drugs is critical to determine the sustained side effects, currently there is no inexpensive in vitro method to guide the selection of spinal drug delivery parameters. The goal of this study is to demonstrate current computational capabilities to predict drug biodistribution while varying 3 parameters: (1) infusion settings, (2) drug chemistry, and (3) subject-specific anatomy and cerebrospinal fluid dynamics. We will discuss strategies to systematically optimize these 3 parameters to administer drug molecules to targeted tissue locations in the central nervous system.
Methods: We acquired anatomical data from magnetic resonance imaging (MRI) and velocity measurements in the spinal cerebrospinal fluid with CINE-MRI for 2 subjects. A bench-top surrogate of the subject-specific central nervous system was constructed to match measured anatomical dimensions and volumes. We generated a computational mesh for the bench-top model. Idealized simulations of tracer distribution were compared with bench-top measurements for validation. Using reconstructions from MRI data, we also introduced a subject-specific computer model for predicting drug spread for the human volunteer.
Results: MRI velocity measurements at 3 spinal regions of interest reasonably matched the simulated flow fields in a subject-specific computer mesh. Comparison between the idealized spine computations and bench-top tracer distribution experiments demonstrate agreement of our drug transport predictions to this physical model. Simulated multibolus drug infusion theoretically localizes drug to the cervical and thoracic region. Continuous drug pump and single bolus injection were successful to target the lumbar spine in the simulations. The parenchyma might be targeted suitably by multiple boluses followed by a flush infusion. We present potential guidelines that take into account drug specific kinetics for tissue uptake, which influence the speed of drug dispersion in the model and potentially influence tissue targeting.
Conclusions: We present potential guidelines considering drug-specific kinetics of tissue uptake, which determine the speed of drug dispersion and influence tissue targeting. However, there are limitations to this analysis in that the parameters were obtained from an idealized healthy patient in a supine position. The proposed methodology could assist physicians to select clinical infusion parameters for their patients and provide guidance to optimize treatment algorithms. In silico optimization of intrathecal drug delivery therapies presents the first steps toward a possible care paradigm in the future that is specific to personalized patient anatomy and diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1213/ANE.0000000000002011 | DOI Listing |
J Cardiovasc Surg (Torino)
February 2025
Department of Vascular Surgery, ASST Settelaghi Universitary Teaching Hospital, University of Insubria, Varese, Italy.
Optimizing the longevity of vascular access in hemodialysis patients remains a critical aspect of patient care, given the significant role of arteriovenous fistulas (AVFs) and arteriovenous grafts (AVGs) in enabling effective dialysis. Vascular access complications, such as stenosis, thrombosis, and cannulation-related damage, continue to challenge both the functionality and the sustainability of these access points. Recent advancements underscore the importance of a robust follow-up strategy, integrating clinical evaluations with diagnostic tools like color Doppler ultrasound (CDU) and emerging interventional approaches such as drug-coated balloon (DCB) angioplasty.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China.
Efficient and accurate drug-target affinity (DTA) prediction can significantly accelerate the drug development process. Recently, deep learning models have been widely applied to DTA prediction and have achieved notable success. However, existing methods often encounter several common issues: first, the data representations lack sufficient information; second, the extracted features are not comprehensive; and third, most methods lack interpretability when modeling drug-target binding.
View Article and Find Full Text PDFChempluschem
January 2025
Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland.
This review highlights how a Ir(III) and Ru(II) coordination complexes can change theirs cytotoxic activity by interacting with a biomolecules such as deoxyribonucleic acid (DNA), human albumins (HSA), nicotinamide adenine dinucleotide (NADH), and glutathione (GSH). We have selected biomolecules (DNA, NADH, GSH, and HSA) based on their significant biological roles and importance in cellular processes. Moreover, this review may provide useful information for the development of new half-sandwich Ir(III) and Ru(II) complexes with desired properties and relevant biological activities.
View Article and Find Full Text PDFSci Prog
January 2025
Department of Obstetrics and Gynecology, Hebei Medical University Third Hospital, Shijiazhuang, China.
Objective: Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC.
View Article and Find Full Text PDFJ Med Chem
January 2025
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!