A new enzymatic assay method that uses deconjugation enzymes was developed to evaluate the presence and extent of conjugated pharmaceuticals in the form of glucuronide conjugates or sulphate conjugates in river environments. First, acetaminophen glucuronide (Ace Glu) and acetaminophen sulphate (Ace Sul) were used as model conjugated pharmaceuticals to determine the appropriate combination of deconjugation enzymes and reaction conditions, including temperature, duration and pH. Next, we applied the defined method to 19 pharmaceuticals grouped into nine therapeutic classes that were chosen based on previously detected levels and frequencies in sewage and river water. The enzymatic decomposition profile varied widely depending upon the enzyme preparations available. The effect of the water reaction temperature was small between 5 and 40 °C, and the reaction proceeded in for both glucuronide conjugates and sulphate conjugates at an approximately neutral pH (corresponding to usual river water conditions) within 1 h. Application of the method to environmental samples showed that some pharmaceuticals were present in both glucuronide conjugate and sulphate conjugated forms, although glucuronide conjugates were the primary forms in the river water environment. Water treatment systems at sewage treatment plants were found to be effective for the removal of these conjugated compounds. The present results should be valuable in the environmental risk assessment of conjugated pharmaceuticals and in keeping river environments clean. To the best of our knowledge, this is the first report that enables the evaluation of the pharmaceutical deconjugation potential in a river environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2017.04.040 | DOI Listing |
Water Res
January 2025
Hull International Fisheries Institute, School of Natural Sciences, University of Hull, Hull, UK.
Globally, fish have been severely affected by the widespread, chronic degradation of fresh waters, with a substantial proportion of species declining in abundance or range in recent decades. This has especially been the case in densely populated countries with an industrial heritage and intensive agriculture, where the majority of river catchments have been affected by deteriorations in water quality and changes in land use. This study used a spatially and temporally extensive dataset, encompassing 16,124 surveys at 1180 sites representing a wide range of river typologies and pressures, to examine changes in the fish populations of England's rivers over four decades (1980s-2010s).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
In this research, the effect of seed halopriming with plasma activated water (PAW) on wheat germination parameters have been studied. Response surface methodology was used to investigate the effect of three factors including: 1) type of water (distilled water, 0.2 and 0.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
Escherichia coli is one of the critical One Health pathogens due to its vast array of virulence and antimicrobial resistance genes. This study used multiplex PCR to determine the occurrence of virulence genes bfp, ompA, traT, eaeA, and stx1 among 50 multidrug-resistant (MDR) E. coli isolates from humans (n = 15), animals (n = 29), and the environment (n = 6) in Dar es Salaam, Tanzania.
View Article and Find Full Text PDFToxics
January 2025
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in () were investigated through physiological and nontargeted metabolomic assessments.
View Article and Find Full Text PDFToxics
December 2024
Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
There is concern over potential toxic elements (PTEs) impacting river ecosystems due to human and industrial activities. The river's water, sediment, and aquatic life are all severely affected by the release of chemical and urban waste. PTE concentrations in sediment, water, and aquatic species from river ecosystems are reported in this review.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!