Introduction: The α-synuclein (SNCA) gene has been implicated in the etiology of Parkinson's disease (PD) and dementia with Lewy bodies (DLB).
Methods: A computational analysis of SNCA 3' untranslated region to identify potential microRNA (miRNA) binding sites and quantitative real-time polymerase chain reaction (PCR) to determine their expression in isogenic induced pluripotent stem cell-derived dopaminergic and cholinergic neurons as a model of PD and DLB, respectively, were performed. In addition, we performed a deep sequencing analysis of the SNCA 3' untranslated region of autopsy-confirmed cases of PD, DLB, and normal controls, followed by genetic association analysis of the identified variants.
Results: We identified four miRNA binding sites and observed a neuronal-type-specific expression profile for each miRNA in the different isogenic induced pluripotent stem cell-derived dopaminergic and cholinergic neurons. Furthermore, we found that the short structural variant rs777296100-polyT was moderately associated with DLB but not with PD.
Discussion: We suggest that the regulation of SNCA expression through miRNAs is neuronal-type-specific and possibly plays a part in the phenotypic heterogeneity of synucleinopathies. Furthermore, genetic variability in the SNCA gene may contribute to synucleinopathies in a pathology-specific manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647200 | PMC |
http://dx.doi.org/10.1016/j.jalz.2017.03.001 | DOI Listing |
Int J Mol Sci
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.
N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.
View Article and Find Full Text PDFMov Disord
January 2025
British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
Background: Trinucleotide repeat expansions are an emerging class of genetic variants associated with various movement disorders. Unbiased genome-wide analyses can reveal novel genotype-phenotype associations and provide a diagnosis for patients and families.
Objective: The aim was to identify the genetic cause of a severe progressive movement disorder phenotype in 2 affected brothers.
Cells
January 2025
School of Medicine, Newgiza University (NGU), Giza 12577, Egypt.
Meis1 is a transcription factor involved in numerous functions including development and proliferation and has been previously shown to harness cell cycle progression. In this study, we used in silico analysis to predict that miR-499-5p targets Meis1 and that Malat1 sponges miR-499-5p. For the first time, we demonstrated that the overexpression of miR-499-5p led to the downregulation of Meis1 mRNA and protein in C166 cells by directly binding to its 3'UTR.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
Metagenomes present a source for novel enzymes, but under 1% of environmental microbes are cultivatable. Because of its useful properties, Escherichia coli has been used as a host organism in functional genomic screens. However, due to differing expression machineries in the expression host compared to the source organism of the DNA sequences, screening outcomes can be biased.
View Article and Find Full Text PDFNat Commun
January 2025
Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity to ligand (EC) is controlled is critical to explain how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover roles by which RNA folding dynamics control riboswitch sensitivity in cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!