A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Biomimetic Alternative to Synthetic Hydroxyapatite: "Boron-Containing Bone-Like Hydroxyapatite" Precipitated From Simulated Body Fluid. | LitMetric

A Biomimetic Alternative to Synthetic Hydroxyapatite: "Boron-Containing Bone-Like Hydroxyapatite" Precipitated From Simulated Body Fluid.

Ann Plast Surg

From the *Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, †Bioengineering Department, ‡Department of Anatomy, §Department of Histology and Embryology, Faculty of Medicine, and ∥Chemical Engineering Department, Hacettepe University, Ankara, Turkey.

Published: September 2017

Background: Biological hydroxyapatite (HA), has several mechanical and physical advantages over the commercially available synthetic apatite (CAP-HA). The aim of this in vivo study was to investigate the effect of osteoinductive "bone-like hydroxyapatite" obtained from simulated body fluid (SBF) combined with osteoinductive "boron" (B) on bone healing.

Materials: Bone like nanohydroxyapatite (SBF-HA) was precipitated from 10× simulated body fluid (10×SBF). Thirty Sprague-Dawley rats were randomly divided into 5 experimental groups (n = 6 each). The groups were involving blank defect, chitosan, SBF-HA, SBF-HA/B, and CAP-HA. Two biparietal round critical sized bone defect was created using a dental burr. The rats were sacrificed respectively at the end of second and fourth months after surgery and their calvarium were harvested for further macroscopic, microtomographic, and histologic evaluation.

Results: The SBF-HA/B group demonstrated the highest mineralized matrix formation rates (30.69 ± 3.73 for the second month, 62.68 ± 7.03 for the fourth month) and was significantly higher than SBF-HA and the CAP-HA groups. The SBF-HA/B group demonstrated the highest mineralized matrix formation rates (30.69 ± 3.73 for the second month, 62.68 ± 7.03 for the fourth month) and was significantly higher than SBF-HA and the CAP-HA groups. In means of bone defect repair histologically, the highest result was observed in the SBF-HA/B group (P < 0.001).

Conclusions: The "bone-like hydroxapatite" obtained from simulated body fluid is worth attention when both its beneficial effects on bone healing and its biological behavior is taken in consideration for further bone tissue engineering studies. It appears to be a potential alternative to the commercially available hydroxyapatite samples.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SAP.0000000000001072DOI Listing

Publication Analysis

Top Keywords

simulated body
16
body fluid
16
sbf-ha/b group
12
bone defect
8
group demonstrated
8
demonstrated highest
8
highest mineralized
8
mineralized matrix
8
matrix formation
8
formation rates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!