Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

Phys Rev Lett

Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.

Published: April 2017

We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.141102DOI Listing

Publication Analysis

Top Keywords

black hole
16
spinning black
12
renormalized stress-energy
8
stress-energy tensor
8
tensor evaporating
4
evaporating spinning
4
black
4
hole
4
hole provide
4
provide calculation
4

Similar Publications

Exceptional Point and Hysteresis in Perturbations of Kerr Black Holes.

Phys Rev Lett

December 2024

Universidade Federal de Pernambuco, Departamento de Física, 50670-901, Recife, Brazil.

We employ the isomonodromic method to study linear scalar massive perturbations of Kerr black holes for generic scalar masses Mμ and generic black hole spins a/M. We find that the longest-living quasinormal mode and the first overtone coincide for (Mμ)_{c}≃0.370 4981 and (a/M)_{c}≃0.

View Article and Find Full Text PDF

Primordial black holes and their gravitational-wave signatures.

Living Rev Relativ

January 2025

Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX UK.

In the recent years, primordial black holes (PBHs) have emerged as one of the most interesting and hotly debated topics in cosmology. Among other possibilities, PBHs could explain both some of the signals from binary black hole mergers observed in gravitational-wave detectors and an important component of the dark matter in the Universe. Significant progress has been achieved both on the theory side and from the point of view of observations, including new models and more accurate calculations of PBH formation, evolution, clustering, merger rates, as well as new astrophysical and cosmological probes.

View Article and Find Full Text PDF

On the "direct detection" of gravitational waves.

Stud Hist Philos Sci

January 2025

Philosophy Department, Tufts University, United States of America; Black Hole Initiative, Harvard University, United States of America; Lichtenberg Group for History and Philosophy of Physics, University of Bonn, Germany. Electronic address:

In this paper, I provide an account of direct (vs. indirect) detection in gravitational-wave astrophysics. In doing so, I highlight the epistemic considerations that lurk behind existing debates over the application of the term "direct".

View Article and Find Full Text PDF

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!