Weather conditions can affect sensors' readings when sampling outdoors. Although sensors are usually set up covering a wide range of conditions, their operational range must be established. In recent years, depth cameras have been shown as a promising tool for plant phenotyping and other related uses. However, the use of these devices is still challenged by prevailing field conditions. Although the influence of lighting conditions on the performance of these cameras has already been established, the effect of wind is still unknown. This study establishes the associated errors when modeling some tree characteristics at different wind speeds. A system using a Kinect v2 sensor and a custom software was tested from null wind speed up to 10 m·s. Two tree species with contrasting architecture, poplars and plums, were used as model plants. The results showed different responses depending on tree species and wind speed. Estimations of Leaf Area (LA) and tree volume were generally more consistent at high wind speeds in plum trees. Poplars were particularly affected by wind speeds higher than 5 m·s. On the contrary, height measurements were more consistent for poplars than for plum trees. These results show that the use of depth cameras for tree characterization must take into consideration wind conditions in the field. In general, 5 m·s (18 km·h) could be established as a conservative limit for good estimations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426838PMC
http://dx.doi.org/10.3390/s17040914DOI Listing

Publication Analysis

Top Keywords

wind speed
12
wind speeds
12
depth cameras
8
tree species
8
plum trees
8
wind
7
tree
6
conditions
5
influence wind
4
speed rgb-d
4

Similar Publications

Pine wilt disease has caused significant damage to China's ecological and financial resources. To prevent its further spread across the country, proactive control measures are necessary. Given the low accuracy of traditional models, we have employed an enhanced LightGBM model to predict the development trend of pine wilt disease in China.

View Article and Find Full Text PDF

Drones play a key role in enhancing nutrient management efficiency under climate change scenarios by enabling precise and adaptable spray applications. Current aerial spray application research is primarily focused on examining the influence of drone spraying parameters flight height, travel speed, rotor configuration, droplet size, payload, spray pressure, spray discharge and wind velocity on spray droplet deposition characteristics. The present study aimed to study and optimize the effect of spray height, operating pressure, nozzle spacing and spray nozzle mounting configuration on spray discharge rate, spray width, spray distribution pattern, spray uniformity and spray liquid loss.

View Article and Find Full Text PDF

Leakage analysis and leakage monitoring system design for LNG tanker filling process.

Sci Rep

December 2024

PetroChina Kunlun Gas Co., Ltd. Sichuan Branch, Chengdu Sichua, China.

During the filling process of LNG tank trucks, due to the long-term operation of filling equipment in low temperature and high-pressure conditions, the sealing parts in the equipment are prone to failure, leading to leaks. The reasons for the leakage of LNG filling equipment were analyzed, and the diffusion of LNG after different equivalent leakage hole diameters and different wind speeds were numerically analyzed. A gas leak monitoring system suitable for LNG filling stations was established based on TDLAS technology.

View Article and Find Full Text PDF

With rising demand for electricity, integrating renewable energy sources into power networks has become a key challenge. The fast incorporation of clean energy sources, particularly solar and wind power, into the existing power grid in the last several years has raised a major problem in controlling and managing the power grid due to the intermittent nature of these sources. Therefore, in order to ensure the safe RES integration providing high-quality power at a fair price and for the secure and reliable functioning of electrical systems, a precise one-day-ahead solar irradiation and wind speed forecast is essential for a stable and safe hybrid energy system.

View Article and Find Full Text PDF

This paper addresses the smart management and control of an independent hybrid system based on renewable energies. The suggested system comprises a photovoltaic system (PVS), a wind energy conversion system (WECS), a battery storage system (BSS), and electronic power devices that are controlled to enhance the efficiency of the generated energy. Regarding the load side, the system comprises AC loads, DC loads, and a water pump.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!