Here, we demonstrate a phosphorodiamidate morpholino oligos (PMO)-functionalized nanochannel biosensor for label-free detection of microRNAs (miRNAs) with ultrasensitivity and high sequence specificity. PMO, as a capture probe, was covalently anchored on the nanochannel surface. Because of the neutral character and high sequence-specific affinity of PMO, hybridization efficiency between PMO and miRNAs was enhanced, thus largely decreasing background signals and highly improving the detection specificity and sensitivity. The miRNAs detection was realized through observing the change of surface charge density when PMO/miRNAs hybridization occurred. Not only could the developed biosensor specifically discriminate complementary miRNAs (Let-7b) from noncomplementary miRNAs (miR-21) and one-base mismatched miRNAs (Let-7c), but also it could detect target miRNAs in serum samples. In addition, this nanochannel-based biosensor attained a reliable limit of detection down to 1 fM in PBS and 10 fM in serum sample, respectively. It is expected that such a new method will benefit miRNA detection in clinical diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.7b00487 | DOI Listing |
OMICS
January 2025
Biotechnology Institute, Ankara University, Ankara, Turkey.
A systems medicine understanding of the regulatory molecular circuits that underpin breast cancer is essential for early cancer detection and precision/personalized medicine in clinical oncology. Transcription factors (TFs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) control gene expression and cell biology, and by extension, serve as pillars of the regulatory circuits that determine human health and disease. We report here the development of a regulatory circuit analysis program, , constructing 10 different types of regulatory elements involving messenger RNA, miRNA, lncRNA, and TFs.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, USA.
Identifying biomarkers of mycotoxin effects in chickens will provide an opportunity for early intervention to reduce the impact of mycotoxicosis. This study aimed to identify whether serum enzyme concentrations, gut integrity, and liver miRNAs can be potential biomarkers for fumonisin B1 (FB1), deoxynivalenol (DON), and zearalenone (ZEA) toxicity in broiler birds as early as 14 days after exposure. A total of 720 male broiler chicks were distributed to six treatment groups: T1: control group (basal diet), T2 (2 FB1 + 2.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
MicroRNA122 (miR-122) is a microRNA that is highly expressed in hepatocytes and has been identified as a prospective therapeutic target and biomarker for liver injury. An expanding body of research has demonstrated that miR-122 is a critical regulator in both the initiation and progression of a wide range of liver diseases. Traditional methods for detecting miR-122 mainly include Northern blotting and qRT-PCR, but they are technically complex and cumbersome, requiring expensive instruments and high technical requirements.
View Article and Find Full Text PDFNeural Regen Res
December 2024
College of Computer Science, Sichuan Normal University, Chengdu, Sichuan Province, China.
Alzheimer's disease, a progressively degenerative neurological disorder, is the most common cause of dementia in the elderly. While its precise etiology remains unclear, researchers have identified diverse pathological characteristics and molecular pathways associated with its progression. Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease.
View Article and Find Full Text PDFOncol Lett
March 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.
Chemoresistance is a major obstacle in the treatment of gastric cancer (GC). Notably, aberrant expression of microRNAs (miRs) is closely related to tumor development and progression. In the present study, the role of miR-424-5p in the chemoresistance of GC was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!