Modification of Calcium-Activated Chloride Currents in Cerebellar Purkinje Neurons.

Bull Exp Biol Med

Laboratory of Neuroreception, Institute of Physiologically Active Substances, Russian Academy of Sciences, Chernogolovka, Moscow, Region, Russia.

Published: April 2017

The whole-cell voltage clamp technique was employed to record the total ionic currents in rat cerebellar Purkinje neurons. When intrapipette solution contained 120 mM KCl, replacement of the standard external physiological saline with Na-free solution resulted in appearance of inward tail current after the end of the depolarizing pulse. When intrapipette potassium ions were replaced for cesium ones, the tail currents were observed even in the presence of normal Na concentration (140 mM) in the external solution. Tail currents were not observed when external solution contained no Cl and/or Ca ions. Niflumic acid (25-100 μM) blocked these currents by 80-100%. Complete replacement of external Na for Tris ions pronouncedly augmented the amplitude and duration of the tail currents. These findings suggest that the tail transients in rat cerebellar Purkinje neurons are calcium-activated chloride currents whose amplitude and kinetics depend on ionic composition of the extracellular and intracellular solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-017-3694-1DOI Listing

Publication Analysis

Top Keywords

cerebellar purkinje
12
purkinje neurons
12
tail currents
12
calcium-activated chloride
8
chloride currents
8
rat cerebellar
8
solution contained
8
currents observed
8
external solution
8
currents
7

Similar Publications

Distribution and functional significance of KLF15 in mouse cerebellum.

Mol Brain

January 2025

Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.

Kruppel-like factor 15 (KLF15), a member of the KLF family, is closely involved in many biological processes. However, the mechanism by which KLF15 regulates neural development is still unclear. Considering the complexity and importance of neural network development, in this study, we investigated the potent regulatory role of KLF15 in neural network development.

View Article and Find Full Text PDF

We use our tongue much like our hands: to interact with objects and transport them. For example, we use our hands to sense properties of objects and transport them in the nearby space, and we use our tongue to sense properties of food morsels and transport them through the oral cavity. But what does the cerebellum contribute to control of tongue movements? Here, we trained head-fixed marmosets to make skillful tongue movements to harvest food from small tubes that were placed at sharp angles to their mouth.

View Article and Find Full Text PDF

Alexander's law states that spontaneous nystagmus increases when looking in the direction of fast-phase and decreases during gaze in slow-phase direction. Disobedience to Alexander's law is occasionally observed in central nystagmus, but the underlying neural circuit mechanisms are poorly understood. In a retrospective analysis of 2,652 patients with posterior circulations stroke, we found a violation of Alexander's law in one or both directions of lateral gaze in 17 patients with lesions of unilateral lateral medulla affecting the vestibular nucleus.

View Article and Find Full Text PDF

The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay.

View Article and Find Full Text PDF

Toxic-induced cerebellar syndrome (TOICS) poses substantial neurological challenges, given its diverse causes and complex manifestations. Gold nanoparticles (AuNPs) have gained significant attention owing to enhanced biocompatibility for therapeutic interventions. We aimed to investigate the impacts of AuNPs on cerebellar cytomolecular, immunohistochemical and ultrastructural alterations in the context of phenytoin-experimentally induced TOICS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!