Will the ongoing extinction crisis cause a severe loss of evolutionary information accumulated over millions of years on the tree of life? This question has been largely explored, particularly for vertebrates and angiosperms. However, no equivalent effort has been devoted to gymnosperms. Here, we address this question focusing on cycads, the gymnosperm group exhibiting the highest proportion of threatened species in the plant kingdom. We assembled the first complete phylogeny of cycads and assessed how species loss under three scenarios would impact the cycad tree of life. These scenarios are as follows: (1) All top 50% of evolutionarily distinct (ED) species are lost; (2) all threatened species are lost; and (3) only all threatened species in each IUCN category are lost. Finally, we analyzed the biogeographical pattern of cycad diversity hotspots and tested for gaps in the current global conservation network. First, we showed that threatened species are not significantly clustered on the cycad tree of life. Second, we showed that the loss of all vulnerable or endangered species does not depart significantly from random loss. In contrast, the loss of all top 50% ED, all threatened or all critically endangered species, would result in a greater loss of PD (Phylogenetic Diversity) than expected. To inform conservation decisions, we defined five hotpots of diversity, and depending on the diversity metric used, these hotspots are located in Southern Africa, Australia, Indo-Pacific, and Mexico and all are found within protected areas. We conclude that the phylogenetic diversity accumulated over millions of years in the cycad tree of life would not survive the current extinction crisis. As such, prioritizing efforts based on ED and concentrating efforts on critically endangered species particularly in southern Africa, Australia, Indo-Pacific, and Mexico are required to safeguarding the evolutionary diversity in the cycad tree of life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395460PMC
http://dx.doi.org/10.1002/ece3.2660DOI Listing

Publication Analysis

Top Keywords

threatened species
16
cycad tree
16
tree life
16
extinction crisis
12
endangered species
12
species
9
accumulated millions
8
millions years
8
top 50%
8
species lost
8

Similar Publications

Chikungunya virus (CHIKV) is primarily associated with non-human-primates (NHPs) in Africa, which also infect humans. Since its introduction to Brazil in 2014, CHIKV has predominantly thrived in urban cycles, involving Aedes aegypti mosquitoes. Limited knowledge exists regarding CHIKV occurrence and implications in rural and sylvatic cycles where neotropical NHPs are potential hosts, from which we highlight Leontopithecus chrysomelas (Kuhl, 1820), the golden-headed lion tamarin (GHLT), an endangered species endemic to the Atlantic Forest (AF) in Southern Bahia State, Brazil.

View Article and Find Full Text PDF

Biodiversity encompasses not only species diversity but also the complex interactions that drive ecological dynamics and ecosystem functioning. Still, these critical interactions remain overwhelmingly overlooked in environmental management. In this study, we introduce an ecosystem-based approach that assesses the cumulative effects of climate change and human activities on species in the St.

View Article and Find Full Text PDF

Distribution and habitat of the painted tree rat (Callistomys pictus): Evaluating areas for future surveys and conservation efforts.

PLoS One

January 2025

Departamento de Ciências Biológicas, Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil.

Knowledge of the potential distribution and locations of poorly known threatened species is crucial for guiding conservation strategies and new field surveys. The painted tree-rat (Callistomys pictus) is a monospecific, rare, and endangered echimyid rodent endemic to the southern Bahia Atlantic Forest in Brazil. There have been no records of the species published in the last 20 years, and the region has experienced significant forest loss and degradation.

View Article and Find Full Text PDF

In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.

View Article and Find Full Text PDF

Effects of protection on large-bodied reef fishes in the western Indian Ocean.

Conserv Biol

January 2025

UMR ENTROPIE (IRD, UR, CNRS, IFREMER, UNC), CS 41096, La Reunion, France.

Predatory and large-bodied coral reef fishes have fundamental roles in the functioning and biodiversity of coral reef ecosystems, but their populations are declining, largely due to overexploitation in fisheries. These fishes include sharks, groupers, Humphead wrasse (Cheilinus undulatus), and Green Humphead parrotfish (Bolbometopon muricatum). In the western Indian Ocean, this situation is exacerbated by limited population data on these fishes, including from conventional visual census methods, which limit the surface area surveyed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!