Paclitaxel (PTX), especially albumin-bound PTX in clinical, has displayed significant inhibition of tumor growth in patients. But the systemic distribution and poor water solubility of PTX often lead to severe side effects, consequently limiting the anti-tumor efficacy. In this study, we developed a novel PTX-loaded polymeric micelle drug delivery system. These self-assembled polymeric micelles from core to outside consisted of poly L-phenylalanine (pPhe), DTSSP linked poly L-lysine (pLys), poly ethylene glycol (PEG) and dehydroascorbic acids (DHA). pPhe formed the hydrophobic core to encapsulate PTX; DTSSPs on pLys covalently cross-linked and formed disulfide bond to stabilize PTX from loss in blood circulation; PEG improved solubility to lower toxicity of PTX for its high hydrophilicity; DHA targeted tumors by specifically recognizing GLUT1 mainly expressed on tumor cells. Thus, PTX would be precisely released into tumor cells with high dose of glutathione to break disulfide bond. Moreover, these PTX-loaded polymer micelles significantly suppressed tumor cell viability, proliferation, and migration in vitro, and also greatly inhibited tumor growth and prolonged survival in tumor-bearing mice without detectable side effects. Therefore, the new drug delivery system could reduce severe side effects and enhance anti-tumor efficacy of PTX via peripheral stabilization, low toxicity and tumor targeting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430547 | PMC |
http://dx.doi.org/10.1038/s41598-017-01168-7 | DOI Listing |
Tissue Cell
January 2025
Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China. Electronic address:
Objective: Patients with osteosarcoma (OS) exhibit metastasis upon diagnosis, and the condition frequently acquires resistance to traditional chemotherapy treatments, failing the therapy. The objective of this research was to examine the impact of curculigoside (Cur), a key phenolic compound discovered in the rhizome of C. orchioides Gaertn, on OS cells and the surrounding tumor environment.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China. Electronic address:
Ethnopharmacological Relevance: Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, featuring a high proportion of cancer stem cells (CSCs) and the poorest clinical outcomes. Taraxacum mongolicum Hand. -Mazz.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
January 2025
The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hunan 410008, China. Electronic address:
Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide, ranking third in incidence and second in mortality. While immunotherapy has shown promise in patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), its effectiveness in proficient mismatch repair (pMMR) or microsatellite stable (MSS) CRC remains limited. Recent advances highlight the gut microbiota as a potential modulator of anti-tumor immunity.
View Article and Find Full Text PDFBioorg Chem
January 2025
Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:
In this study, we reported the discovery of a novel type II c-Met/Axl inhibitor, characterized by using 4-amino-7H-pyrrolo[2,3-d]pyrimidine as a hinge region binder. Through a systematic exploration of the structure-activity relationship, based on the clinically reported c-Met inhibitor BMS-777607, we identified the optimized compound 22a. 22a exhibited remarkable potency against c-Met and Axl kinases, with IC values of 1 nM and 10 nM, respectively, and demonstrated over 100-fold selectivity to other members of the TAM subfamily.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!