BACKGROUND Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. However, the role of ASICs in kidney diseases remains uncertain. This study investigated ASICs expression in kidney tissues and their role in the development of Henoch-Schönlein purpura nephritis (HSPN). MATERIAL AND METHODS The expression of ASIC subunits was examined by immunochemical techniques in the kidney tissue from HSPN patients. Acid-induced ASICs expression in cultured renal tubular epithelial cells was determined by quantitative RT-PCR analysis. The expression of K7 and K18 protein in renal tubular epithelial cells was used to evaluate acid-induced cell injury. In addition, we observed the effect of blocking ASICs on acid-induced cell injury to assess the role of ASICs in renal tubular epithelial cell injury. RESULTS The results showed that ASIC1, ASIC2, and ASIC3 proteins were obviously expressed in renal tubular cells from HSPN patients. ASIC1 expression and 24-h urine protein level were higher in the pathological grade ISKD III group than in the ISKD II group. ASIC1, ASIC2, and ASIC3 mRNA, and K7 and K18 protein expression in cultured renal tubular epithelial cells were increased when exposed to pH 6.5. K7 and K18 protein expression was closely related to ASIC1 expression, and ASICs blockers reduced K7 and K18 protein expression in tubular epithelial cells. CONCLUSIONS These findings suggest ASICs are most highly expressed in renal tubular cells of HSPN patients, which is closely related to renal tubular injury. ASICs might be involved in the development of HSPN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408900PMC
http://dx.doi.org/10.12659/msm.904132DOI Listing

Publication Analysis

Top Keywords

renal tubular
32
tubular epithelial
24
epithelial cells
20
k18 protein
16
hspn patients
12
cell injury
12
protein expression
12
expression
10
tubular
9
asics
9

Similar Publications

The kidney plays an important role in iron homeostasis and mesangial cells (MCs) are phagocytic cells important for glomerular homeostasis. Sickle hemoglobin (HbS) modulators are promising clinical candidates for treatment of sickle cell disease. Although they prevent disease pathophysiology of HbS polymerization and red blood cell (RBC) sickling by increasing hemoglobin oxygen affinity, higher oxygen affinity can also cause transient tissue hypoxia with compensatory increases in erythropoiesis and subsequent increases in RBC turnover.

View Article and Find Full Text PDF

Airway exposure to lithium nickel manganese cobalt oxide particles induces alterations in lung microenvironment and potential kidney and liver damage in mice.

Toxicology

December 2024

Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China. Electronic address:

With the increasing use of lithium-ion batteries, the exposure and health effects of lithium nickel manganate cobalt (NMC), a popular cathode material for the battery, have attracted widespread attention. However, the main absorption routes and target organs of NMC are unknown. This study aims to systematically investigate the main absorption routes and target organs of NMC.

View Article and Find Full Text PDF

Isoquercitrin improves diabetes nephropathy by inhibiting the sodium-glucose co-transporter-2 pathway.

Biochem Biophys Res Commun

December 2024

Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Key Laboratory of Thyroid Diseases, Medical Research Cente, Qingdao, China. Electronic address:

Diabetic nephropathy (DN) is one of the most severe kidney complications and the primary contributor to end-stage renal disease on a global scale. It exacerbates the morbidity, mortality, and financial burden for individuals with diabetes. Isoquercitrin, a natural compound found in various plants, has demonstrated potential as an antidiabetic agent.

View Article and Find Full Text PDF

Deletion of lymphotoxin-β receptor (LTβR) protects against acute kidney injury by PPARα pathway.

Mol Med

December 2024

Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.

Background: Recent data has shown a considerable advancement in understanding the role of lymphotoxin-β receptor (LTβR) in inflammation. However, the functions and underlying mechanisms of LTβR in acute kidney injury (AKI) remain largely unknown.

Methods: AKI was induced in mice by renal ischemia-reperfusion (I/R).

View Article and Find Full Text PDF

Diabetic kidney disease (DKD), one of the most prevalent microvascular complications of diabetes, arises from dysregulated glucose and lipid metabolism induced by hyperglycemia, resulting in the deterioration of renal cells such as podocytes and tubular epithelial cells. Programmed cell death (PCD), comprising apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, represents a spectrum of cell demise processes intricately governed by genetic mechanisms in vivo. Under physiological conditions, PCD facilitates the turnover of cellular populations and serves as a protective mechanism to eliminate impaired podocytes or tubular epithelial cells, thereby preserving renal tissue homeostasis amidst hyperglycemic stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!