Nitric oxide-regulated proteolysis of human CYP2B6 via the ubiquitin-proteasome system.

Free Radic Biol Med

Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA. Electronic address:

Published: July 2017

We showed previously that rat cytochrome P450 CYP2B1 undergoes NO-dependent proteasomal degradation in response to inflammatory stimuli, and that the related human enzyme CYP2B6 is also down-regulated by NO in primary human hepatocytes. To investigate the mechanism of CYP2B6 down-regulation, we made several cell lines (HeLa and HuH7 cells) in which native CYP2B6 or CYP2B6 with a C-terminal V5 tag (CYP2B6V5) are expressed from a lentiviral vector with a cytomegalovirus promoter. Native CYP2B6 protein was rapidly down-regulated in HeLa cells within 3h of treatment with the NO donor (Z)-1-[2-(2-Aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, while its mRNA level was not down-regulated. Treatment of the cells with the NO donor (Z)-1-[N-(3-aminopropyl)-N-(3-ammoniopropyl)amino]diazen-1-ium-1,2-diolate also resulted in rapid down-regulation of CYP2B6 activity, measured as the formation of 7-hydroxy-4-trifluoromethylcoumarin, as well as 2B6 protein in the CYP2B6 HeLa cell line. CYP2B6V5 was also down-regulated by NO donors in HuH7 cells. Down-regulation was observed in the presence of cycloheximide, demonstrating that this occurs via a post-translational mechanism. We generated a HeLa cell line expressing both CYP2B6V5 and human nitric oxide synthase 2 (NOS2), the latter under positive control by tetracycline. The cellular NO produced by doxycycline treatment also effectively down-regulated CYP2B6 protein, which was blocked by the co-treatment with the NOS2 competitive inhibitor L-N-nitroarginine methyl ester (L-NAME). We next investigated the proteolytic enzymes responsible for NO-dependent CYP2B6 degradation. Neither calpain inhibitors (N-Acetyl-L-leucyl-L-leucyl-L-norleucinal, carbobenzoxy-valinyl-phenylalaninal), nor lysosomal protease inhibitors (3-methyladenine and chloroquine) inhibited the NO dependent CYP2B6V5 down-regulation. The proteasome inhibitors MG132 and bortezomib attenuated, but did not completely block the NO-induced down-regulation in the HuH7 cell line. However, when cells were co-treated with NO donor and proteasome inhibitors, high molecular mass species could be detected on native CYP2B6 as well as CYP2B6V5 Western blots. Further investigation demonstrated that CYP2B6 protein was polyubiquitinated and this was dramatically enhanced by co-treatment with NO donor and bortezomib. Taken together, our data demonstrate that CYP2B6 is down-regulated in an NO-dependent manner via ubiquitination and proteasomal degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507215PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.015DOI Listing

Publication Analysis

Top Keywords

cyp2b6
13
native cyp2b6
12
cyp2b6 protein
12
proteasomal degradation
8
cyp2b6 down-regulated
8
huh7 cells
8
hela cell
8
proteasome inhibitors
8
down-regulated
6
down-regulation
5

Similar Publications

Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance.

View Article and Find Full Text PDF
Article Synopsis
  • Production of polychlorinated biphenyls (PCBs) has been banned since 2001, but health risks from exposure continue due to their metabolism by enzymes like CYP2B6, where gene polymorphisms may influence this process.
  • The study analyzed blood samples from 129 individuals to explore the relationship between specific CYP2B6 gene variants and levels of PCBs and their metabolites (OH-PCBs), finding variations in metabolism linked to different genotypes, particularly *1/*4 and *6/*6.
  • Results showed that the *1/*4 genotype was correlated with higher metabolite-to-parent compound ratios for certain PCBs, while the *6/*6 genotype showed the opposite effect, indicating complex interactions between genetic factors
View Article and Find Full Text PDF

A Template system for the understanding of human CYP2J2-mediated reactions was constructed from the assembly of the ligands with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site, which were in common with other Template* systems for human CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, CYP3A4, CYP3A5, and CYP3A7 (Drug Metab Pharmacokinet 2016, 2017, 2019, 2020, 2021, 2022, 2023, 2024, and in press 2024). CYP2J2 system also includes ideas of bi-molecule binding of ligands on the Template. From their placements on the Template and rules for interaction modes, verifications of good and poor substrates, regio/stereo-selectivity, and inhibitory interaction became available faithfully for these ligands.

View Article and Find Full Text PDF

Pharmacogenomic profiling of the South Korean population: Insights and implications for personalized medicine.

Front Pharmacol

December 2024

Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.

Adverse drug reactions (ADRs) pose substantial public health issues, necessitating population-specific characterization due to variations in pharmacogenes. This study delineates the pharmacogenomic (PGx) landscape of the South Korean (SKR) population, focusing on 21 core pharmacogenes. Whole genome sequencing (WGS) was conducted on 396 individuals, including 99 healthy volunteers, 95 patients with chronic diseases, 81 with colon cancer, 81 with breast cancer, and 40 with gastric cancer, to identify genotype-specific drug dosing recommendations.

View Article and Find Full Text PDF

Prevalence Estimates of Cytochrome P450 Phenoconversion in Youth Receiving Pharmacotherapy for Mental Health Conditions.

Clin Pharmacol Ther

December 2024

The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Pharmacogenetics-predicted drug metabolism may not match clinically observed metabolism due to a phenomenon known as phenoconversion. Phenoconversion can occur when an inhibitor or inducer of a drug-metabolizing enzyme is present. Although estimates of phenoconversion in adult populations are available, prevalence estimates in youth populations are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!