There is currently a worldwide need to develop efficient photocatalytic materials that can reduce the high-energy cost of common industrial chemical processes. One possible solution focuses on metallic nanoparticles (NPs) that can act as efficient absorbers of light due to their surface plasmon resonance. Recent work indicates that small NPs, when photoexcited, may allow for efficient electron or hole transfer necessary for photocatalysis. Here we investigate the mechanisms behind hot hole carrier dynamics by studying the photodriven oxidation of citrate ions on Au@SiO@Au core-shell NPs. We find that charge transfer to adsorbed molecules is most efficient at higher photon energies but still present with lower plasmon energy. On the basis of these experimental results, we develop a simple theoretical model for the probability of hot carrier-adsorbate interactions across the NP surface. These results provide a foundation for understanding charge transfer in plasmonic photocatalytic materials, which could allow for further design and optimization of photocatalytic processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.7b00563DOI Listing

Publication Analysis

Top Keywords

hot hole
8
photocatalytic materials
8
charge transfer
8
hole photoelectrochemistry
4
photoelectrochemistry au@sio@au
4
au@sio@au nanoparticles
4
nanoparticles currently
4
currently worldwide
4
worldwide develop
4
efficient
4

Similar Publications

Direct Hot Solid-Liquid Extraction (DH-SLE): A High-Yield Greener Technique for Lipid Recovery from Coffee Beans.

Plants (Basel)

January 2025

Departamento de Química, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil.

Soxhlet extraction is a method recommended by the Association of Official Analytical Chemists (AOAC) to determine the lipid content in plant samples. Generally, n-hexane (toxicity grade 5) is used as the solvent (≈300 mL; ≈30 g sample) at boiling temperatures (69 °C) for long times (≤16 h) under a chilled water reflux (≈90 L/h), proportionally aggravated by the number of repetitions and samples determined. In this sense, the technique is neither safe nor sustainable for the analyst or the environment.

View Article and Find Full Text PDF

The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths.

View Article and Find Full Text PDF

The experimental and theoretical study of photovoltage formation in perovskite solar cells under pulsed laser excitation at 0.53 μm wavelength is presented. Two types of solar cells were fabricated on the base of cesium-containing triple cation perovskite films: (1) Cs(FAMA)Pb(IBr) and (2) Cs(FAMA)PbSn(IBr).

View Article and Find Full Text PDF

Fully Integrated MEMS Micropump and Miniaturized Mass Flow Sensor as Basic Components for a Microdosing System.

Micromachines (Basel)

November 2024

Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, 80333 Munich, Germany.

Despite major advances in the field of actuator technology for microsystems, miniaturized microfluidic actuation systems for mobile devices are still not common in the market. We present a micropump concept and an associated mass flow sensor design, which, in combination, have the potential to form the basis for an integrated microfluidic development platform for microfluidic systems in general and microdosing systems in particular. The micropump combines the use of active valves with an electrostatic drive principle for the pump membrane and the valves, respectively.

View Article and Find Full Text PDF

Metal electrode deposition is universally adopted in the community for optoelectronic device fabrication, inducing hybridization at electrode interfaces, and allows efficient extraction or injection of photocarriers. However, hybridization-induced midgap states increase photocarrier recombination pathways, creating a paradoxical trade-off. Here, we discovered that efficient photocarrier extraction and a long photocarrier lifetime can be achieved simultaneously in MoS/van der Waals Au contact, minimizing photocarrier loss at the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!