Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present cytometric classification of live healthy and cancerous cells by using the spatial morphological and textural information found in the label-free quantitative phase images of the cells. We compare both healthy cells to primary tumor cells and primary tumor cells to metastatic cancer cells, where tumor biopsies and normal tissues were isolated from the same individuals. To mimic analysis of liquid biopsies by flow cytometry, the cells were imaged while unattached to the substrate. We used low-coherence off-axis interferometric phase microscopy setup, which allows a single-exposure acquisition mode, and thus is suitable for quantitative imaging of dynamic cells during flow. After acquisition, the optical path delay maps of the cells were extracted and then used to calculate 15 parameters derived from the cellular 3D morphology and texture. Upon analyzing tens of cells in each group, we found high statistical significance in the difference between the groups in most of the parameters calculated, with the same trends for all statistically significant parameters. Furthermore, a specially designed machine learning algorithm, implemented on the phase map extracted features, classified the correct cell type (healthy/cancer/metastatic) with 81-93% sensitivity and 81-99% specificity. The quantitative phase imaging approach for liquid biopsies presented in this paper could be the basis for advanced techniques of staging freshly isolated live cancer cells in imaging flow cytometers. © 2017 International Society for Advancement of Cytometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.a.23100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!