Indium tin oxide (ITO) particle coatings are known for high transparency in the visible, good conductive properties and near-infrared absorption. These properties depend on ITO particle's stoichiometric composition, defects and size. Here we present a method to gradually change ITO particle's optical properties by a simple and controlled laser irradiation process. The defined irradiation process and controlled energy dose input allows one to engineer the absorption and transmission of coatings made from these particles. We investigate the role of the surrounding solvent, influence of laser fluence and the specific energy dose targeting modification of the ITO particle's morphology and chemistry by stepwise laser irradiation in a free liquid jet. TEM, SEM, EDX, XPS, XRD and Raman are used to elucidate the structural, morphological and chemical changes of the laser-induced ITO particles. On the basis of these results the observed modification of the optical properties is tentatively attributed to chemical changes, e.g. laser-induced defects or partial reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt00010cDOI Listing

Publication Analysis

Top Keywords

ito particle's
16
optical properties
12
laser irradiation
12
modification ito
8
irradiation free
8
free liquid
8
liquid jet
8
irradiation process
8
energy dose
8
chemical changes
8

Similar Publications

This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study.

View Article and Find Full Text PDF

The manufacturing of thin films through selective laser sintering of micro/nanoparticles is an emerging technology that has been developing rapidly over the last two decades owing to its digitization, efficiency, and good adaptability to various materials. However, high-quality laser sintering of different materials remains a challenge: ceramic particles are difficult to be sintered due to low absorbance; metallic particles are prone to oxidation; semiconductor particles are difficult to process for performance enhancement due to high stress. In this work, a new approach is proposed that employs an additional Indium Tin Oxide (ITO) sacrificial layer to assist laser sintering of different functional materials, which detaches after sintering without contaminating the target material.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Low-cost automated cell counting module fabricated using CNC milling and soft lithography.

HardwareX

December 2024

Department of Applied Physics, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.

Cell counting is one of the basic and essential procedures that researchers in cell biology, bioengineering, and other related fields learn at the outset. Systems based on various measurement principles are commercially available, and each has its own advantages and disadvantages in terms of performance, cost, and footprint. Herein, we developed a cost-effective, scalable, and compact module that enables cell counting with reasonable accuracy, throughput, and sensitivity.

View Article and Find Full Text PDF

We present comparative studies of sol-gel ITO multilayered films undoped and doped with Nb or Zn (4 at.%). The films were obtained by successive depositions of five layers using the dip-coating sol-gel method on microscopic glass, SiO/glass, and Si substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!