Hif-1α Overexpression Improves Transplanted Bone Mesenchymal Stem Cells Survival in Rat MCAO Stroke Model.

Front Mol Neurosci

Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou, China.

Published: March 2017

Bone mesenchymal stem cells (BMSCs) death after transplantation is a serious obstacle impacting on the outcome of cell therapy for cerebral infarction. This study was aimed to investigate whether modification of BMSCs with hypoxia-inducible factor 1α (Hif-1α) could enhance the survival of the implanted BMSCs. BMSCs were isolated from Wistar rats, and were infected with Hif-1α-GFP lentiviral vector or Hif-1α siRNA. The modified BMSCs were exposed to oxygen-glucose deprivation (OGD) condition, cellular viability and apoptosis were then assessed. An inhibitor of AMPK (compound C) was used to detect whether AMPK and mTOR were implicated in the functions of Hif-1α on BMSCs survival. Besides, ultrastructure of BMSCs was observed and the expression of autophagy markers was measured. The modified BMSCs were transplanted into middle cerebral artery occlusion (MCAO) model of rats, and the cerebral infarction volume and neurological function was assessed. The results indicated that Hif-1α overexpression protected OGD induced injury by promoting cellular viability and inhibiting apoptosis. AMPK was activated while mTOR was inactivated by Hif-1α overexpression, and that might be through which Hif-1α functioned BMSCs survival. Hif-1α overexpression promoted autophagy; more important, compound C abolished the induction of Hif-1α on autophagy. Transplantation of the overexpressed Hif-1α of BMSCs into the MCAO rats reduced brain infarct volume and improved neurobehavioral outcome; besides, it inhibited pro-inflammatory cytokines generation while promoted neurotrophin secretion. In conclusion, Hif-1α might be contributed in the survival of BMSCs by regulating the activation of AMPK and mTOR, as well as by promoting autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372780PMC
http://dx.doi.org/10.3389/fnmol.2017.00080DOI Listing

Publication Analysis

Top Keywords

hif-1α overexpression
16
hif-1α
11
bmscs
11
bone mesenchymal
8
mesenchymal stem
8
stem cells
8
cerebral infarction
8
modified bmscs
8
cellular viability
8
ampk mtor
8

Similar Publications

During development, hematopoietic stem cells (HSCs) derive from specialized endothelial cells (ECs) called hemogenic endothelium (HE) via a process called endothelial-to-hematopoietic transition (EHT). Hypoxia-inducible factor-1α (HIF-1α) has been reported to positively modulate EHT in vivo, but current data indicate the existence of other regulators of this process. Here we show that in zebrafish, Hif-2α also positively modulates HSC formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!