The antidepressant-like effect of trans-astaxanthin, a compound present rich in algae, was evaluated through behavioral and neurochemical methods. Results showed that trans-astaxanthin treatment significantly decreased the immobility time in force swim test and tail suspension test, but did not influence locomotor activity. Trans-astaxanthin treatment did not effectively antagonize hypothermia and ptosis induced by reserpine. However, pre-treatment with para-chlorophenylalanine abolished the anti-immobility effect of trans-astaxanthin in force swim and tail suspension test. These results suggested that the mechanism of antidepressant-like effect of trans-astaxanthin may involve the serotonergic system, but not noradrenaline system. This hypothesis was confirmed by neurochemical assays which showed that trans-astaxanthin increased serotonin levels in the hippocampus, frontal cortex, striatum and hypothalamus. Furthermore, our data suggested that trans-astaxanthin decreased indoleamine 2, 3-dioxygenase activity in the hippocampus, frontal cortex and hypothalamus. Inhibition of indoleamine 2,3-dioxygenase activity subsequently decreased the kynurenine/tryptophan ratio and increased the serotonin/tryptophan ratio in these brain regions. Taken together, these findings indicate that the antidepressant-like effect of trans-astaxanthin involves the serotonergic system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421950PMC
http://dx.doi.org/10.18632/oncotarget.16069DOI Listing

Publication Analysis

Top Keywords

antidepressant-like trans-astaxanthin
16
serotonergic system
12
trans-astaxanthin involves
8
involves serotonergic
8
trans-astaxanthin
8
trans-astaxanthin treatment
8
force swim
8
tail suspension
8
suspension test
8
hippocampus frontal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!