Background: FBXW7 functions as a ubiquitin ligase tagging multiple dominant oncogenic proteins and commonly mutates in colorectal cancer. Data suggest missense mutations lead to greater loss of FBXW7 function than other gene aberrations do. However, the clinicopathologic factors and outcomes associated with FBXW7 missense mutations in metastatic colorectal cancer (mCRC) have not been described.
Methods: Data were obtained from mCRC patients whose tumors were evaluated by next-generation sequencing for hotspot mutations at The University of Texas MD Anderson Cancer Center. Alterations in FBXW7 were identified, and their associations with clinicopathologic features and overall survival (OS) were evaluated.
Results: Of 855 mCRC patients, 571 had data on FBXW7 status; 43 (7.5%) had FBXW7 mutations, including 37 with missense mutations. R465C mutations in exon 9 were the most common missense mutations (18.6%). PIK3CA mutations were associated with FBXW7 missense mutations (p=0.012). On univariate analysis, patients with FBXW7 missense mutations had significantly worse OS (median 28.7 mo) than those with wild-type FBXW7 (median 46.6 mo; p=0.003). On multivariate analysis including other known prognostic factors such as BRAF mutations, FBXW7 missense mutations were the strongest negative prognostic factor for OS (hazard ratio 2.0; p=0.003).
Conclusions: In the largest clinical dataset of mCRC to date, FBXW7 missense mutations showed a strong negative prognostic association.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503612 | PMC |
http://dx.doi.org/10.18632/oncotarget.16848 | DOI Listing |
Dis Model Mech
January 2025
Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain of the mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis as well as defects in the nucleus tractus solitarius (nTS) of the hindbrain together with respiratory failure at birth. De Mori et al.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo-ku, Japan. (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.).
Background: Marfan syndrome (MFS) is an inherited disorder caused by mutations in the gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.
Methods: To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the missense mutation p.
Hereditas
January 2025
Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany. Electronic address:
Genotype-phenotype correlations of rare diseases are complicated by low patient number, high phenotype variability and compound heterozygosity. Mutations may cause instability of single proteins, and affect protein complex formation or overall robustness of a specific process in a given cell. Ciliopathies offer an interesting case for studying genotype-phenotype correlations as they have a spectrum of severity and include diverse phenotypes depending on different mutations in the same protein.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy.
Background: Sensorineural hearing loss (SNHL) is a frequent manifestation of syndromic inherited retinal diseases (IRDs), exemplified by the very rare form of autosomal-dominant Leber congenital amaurosis with early onset deafness (LCAEOD; OMIM #617879). LCAEOD was first described in 2017 in four families segregating heterozygous missense mutations in TUBB4B, a gene encoding a β-tubulin isotype. To date, only eight more families with similar TUBB4B-associated sensorineural disease (SND) have been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!