miR-191 suppresses angiogenesis by activation of NF-κB signaling.

FASEB J

Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany

Published: August 2017

MicroRNAs (miRNAs) are powerful regulators of diverse biologic processes. However, the function of most miRNAs in angiogenesis remains elusive. In this study, we identified miR-191-5p (miR-191) as a potent inhibitor of blood vessel development. Transfection of human dermal microvascular endothelial cells with miR-191 mimic (miR-191m) inhibited their proliferation, migration, and tube formation. Moreover, vascular sprouting of miR-191m-transfected mouse aortic rings was significantly reduced when compared with controls. Transfection with miR-191 inhibitor (miR-191i) induced proangiogenic effects. The anti- and proangiogenic activities of miR-191m and -191i were further demonstrated Additional molecular biologic analyses revealed that miR-191m activates NF-κB signaling by up-regulating the mRNA expression of p65. miR-191 also increased the mRNA levels of the antiangiogenic factors p21 and tissue inhibitor of metalloproteinase-1 and reduced the expression of the proangiogenic factors eNOS and matrix metalloproteinase-1 and -9. Blockade of NF-κB activation with Bay 11-7082 reversed the antiangiogenic effects of miR-191m. These findings indicate that miR-191 effectively suppresses angiogenesis by activation of the NF-κB signaling pathway.-Gu, Y., Ampofo, E., Menger, M. D., Laschke, M. W. miR-191 suppresses angiogenesis by activation of NF-κB signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201601263RDOI Listing

Publication Analysis

Top Keywords

nf-κb signaling
16
suppresses angiogenesis
12
angiogenesis activation
12
activation nf-κb
12
mir-191 suppresses
8
mir-191
7
nf-κb
5
angiogenesis
4
activation
4
signaling
4

Similar Publications

The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of mutants, which can suppress the colony-formation defects and lysis phenotype of mutant cells, are isolated and characterized. One of the suppressor mutants, -, shows defects in the cytokinetic contractile ring constriction, septation, and daughter-cell separation, similar to mutant.

View Article and Find Full Text PDF

Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In , the Wnt/β-catenin Asymmetry (WβA) pathway regulates many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin.

View Article and Find Full Text PDF

Nondestructive Mechanical Characterization of Bioengineered Tissues by Digital Holography.

ACS Biomater Sci Eng

January 2025

Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.

Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.

View Article and Find Full Text PDF

Cannabinoid-based Pharmacology for the Management of Substance Use Disorders.

Curr Top Behav Neurosci

January 2025

Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.

In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.

View Article and Find Full Text PDF

Anxiety disorders in children lead to substantial impairment in functioning and development. Even the most effective gold standard treatments for childhood anxiety have 50% remission rates, suggesting a critical need to improve current treatments. Optimising exposure, the key component of anxiety treatments, represents a promising way to do so.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!