A reliable mechanism to predict the heaviness of an object is important for manipulating an object under environmental uncertainty. Recently, Cashaback et al. (Cashaback JGA, McGregor HR, Pun HCH, Buckingham G, Gribble PL. 117: 260-274, 2017) showed that for object lifting the sensorimotor system uses a strategy that minimizes prediction error when the object's weight is uncertain. Previous research demonstrates that visually guided reaching is similarly optimized. Although this suggests a unified strategy of the sensorimotor system for object manipulation, the selected strategy appears to be task dependent and subject to change in response to the degree of environmental uncertainty.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539453PMC
http://dx.doi.org/10.1152/jn.00232.2017DOI Listing

Publication Analysis

Top Keywords

sensorimotor system
12
minimizes prediction
8
prediction error
8
object lifting
8
object's weight
8
weight uncertain
8
environmental uncertainty
8
object
5
system minimizes
4
error object
4

Similar Publications

Background And Aims: Gastric Alimetry™ (Alimetry, New Zealand) is a new clinical test for gastroduodenal disorders involving simultaneous body surface gastric electrical mapping and validated symptom profiling. Studies have demonstrated a range of distinct pathophysiological profiles, and a classification scheme is now required. We used Gastric Alimetry spectral and symptom profiles to develop a mechanism-based test classification scheme, then assessed correlations with symptom severity, psychometrics, and quality of life.

View Article and Find Full Text PDF

Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information.

View Article and Find Full Text PDF

Speech processing involves a complex interplay between sensory and motor systems in the brain, essential for early language development. Recent studies have extended this sensory-motor interaction to visual word processing, emphasizing the connection between reading and handwriting during literacy acquisition. Here we show how language-motor areas encode motoric and sensory features of language stimuli during auditory and visual perception, using functional magnetic resonance imaging (fMRI) combined with representational similarity analysis.

View Article and Find Full Text PDF

The importance of gravity for human motor control is well established, but it remains unclear how the central nervous system accounts for gravitational changes to perform complex motor skills. We tested the hypothesis that microgravity and hypergravity have distinct effects on the neuromuscular control of reaching movements compared to normogravity. To test the influence of gravity levels on sensorimotor planning and control, participants (n = 9) had to reach toward visual targets during parabolic flights.

View Article and Find Full Text PDF

Perceiving inter-leg speed differences while walking on a split-belt treadmill.

Sci Rep

January 2025

Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126, Chemnitz, Germany.

Walking is one of the most common forms of self-motion in humans. Most humans can walk effortlessly over flat uniform terrain, but also a variety of more challenging surfaces, as they adjust their gait to the demands of the terrain. In this, they rely in part on the perception of their own gait and of when it needs to be adjusted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!