Unilaterally nephrectomized rats (UNx) have higher glomerular capillary pressure (P) that can cause significant glomerular injury in the remnant kidney. P is controlled by the ratio of afferent (Af-Art) and efferent arteriole resistance. Af-Art resistance in turn is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to increased NaCl in the macula densa; and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation in response to an increase in NaCl transport in the connecting tubule via the epithelial sodium channel (ENaC). Resetting of TGF post-UNx can allow systemic pressure to be transmitted to the glomerulus and cause renal damage, but the mechanism behind this resetting is unclear. Since CTGF is an Af-Art dilatory mechanism, we hypothesized that CTGF is increased after UNx and contributes to TGF resetting. To test this hypothesis, we performed UNx in Sprague-Dawley (8) rats. Twenty-four hours after surgery, we performed micropuncture of individual nephrons and measured stop-flow pressure (P). P is an indirect measurement of P. Maximal TGF response at 40 nl/min was 8.9 ± 1.24 mmHg in sham-UNx rats and 1.39 ± 1.02 mmHg in UNx rats, indicating TGF resetting after UNx. When CTGF was inhibited with the ENaC blocker benzamil (1 μM/l), the TGF response was 12.29 ± 2.01 mmHg in UNx rats and 13.03 ± 1.25 mmHg in sham-UNx rats, indicating restoration of the TGF responses in UNx. We conclude that enhanced CTGF contributes to TGF resetting after UNx.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230744 | PMC |
http://dx.doi.org/10.1152/ajprenal.00619.2016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!