Objective: The aim of the current study was to describe the relationship between milk yield and lactation number, stage, length and milking frequency in Korean Holstein dairy cows using an automatic milking system (AMS).

Methods: The original data set consisted of observations from April to October 2016 of 780 Holstein cows, with a total of 10,751 milkings. Each time a cow was milked by an AMS during the 24 h, the AMS management system recorded identification numbers of the AMS unit, the cow being milking, date and time of the milking, and milk yield (kg) as measured by the milk meters installed on each AMS unit, date and time of the lactation, lactation stage, milking frequency (NoM). Lactation stage is defined as the number of days milking per cows per lactation. Milk yield was calculated per udder quarter in the AMS and was added to 1 record per cow and trait for each milking. Milking frequency was measured the number of milkings per cow per 24 hour.

Results: From the study results, a significant relationship was found between the milk yield and lactation number (p<0.001), with the maximum milk yield occurring in the third lactation cows. We recorded the highest milk yield, in a greater lactation length period of early stage (55 to 90 days) at a 4× milking frequency/d, and the lowest milk yield was observed in the later stage (>201 days) of cows. Also, milking frequency had a significant influence on milk yield (p<0.001) in Korean Holstein cows using AMS.

Conclusion: Detailed knowledge of these factors such as lactation number, stage, length, and milking frequency associated with increasing milk yield using AMS will help guide future recommendations to producers for maximizing milk yield in Korean Dairy industries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494482PMC
http://dx.doi.org/10.5713/ajas.16.0882DOI Listing

Publication Analysis

Top Keywords

milk yield
24
milking frequency
20
lactation number
12
milking
11
number stage
8
stage length
8
length milking
8
korean holstein
8
holstein dairy
8
dairy cows
8

Similar Publications

Genetic selection for growth rate has often been related with potential negative effects on various reproductive traits across different species. Using rabbit as a model, this study has evaluated for the first time how genetic selection for growth rate has affected feed efficiency, resource allocation, blood traits, reproductive performance and survival during five reproductive cycles in rabbit does. To this end, we used 88 reproductive rabbit females from two vitrified and rederived populations of the same paternal line, differing only in 18 generations of genetic selection for growth rate (n = 44 for R19V and n = 44 for RV37V).

View Article and Find Full Text PDF

A label-free DNAzyme-Mediated biosensor for fluorescent detection of Lead (II) ion.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Lead ion (Pb) is a common environmental contaminant, extremely toxic, persistent, and easily adsorbed, concentrated, and enriched by agricultural products. Ingestion of this ion can result in health problems for humans, including neurological disorders, heart disease, brain damage, and mental deficiency. In this research, a sensitive fluorescent biosensing method for detecting Pb was developed using DNAzyme as the target recognition element and SYBR Green (SG) fluorescent dye as the signal indicator.

View Article and Find Full Text PDF

Distinctive molecular approaches and tools, particularly high-throughput SNP genotyping, have been applied to determine and discover SNPs, potential genes of interest, indicators of evolutionary selection, genetic abnormalities, molecular indicators, and loci associated with quantitative traits (QTLs) in various livestock species. These methods have also been used to obtain whole-genome sequencing (WGS) data, enabling the implementation of genomic selection. Genomic selection allows for selection decisions based on genomic-estimated breeding values (GEBV).

View Article and Find Full Text PDF

The clinical effects on the udder health of several trace elements-copper, iodine, cobalt, and selenium-contained in an intraruminal slow-release bolus were explored for the first time. Fifty-four dairy cows received the bolus (treated group, TG), while fifty-three were left untreated (control group, CG). Monthly composite milk samples were collected from 30 to 300 days in milk to measure somatic cell count (SCC); milk production was also recorded on the same days.

View Article and Find Full Text PDF

Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline.

Biosensors (Basel)

November 2024

Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.

Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO NGs and construct a cascade reaction system to detect choline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!