Cumulative toxicity from weekly paclitaxel (myalgia, peripheral neuropathy, fatigue) compromises long-term administration. Preclinical data suggest that the burden of critically short telomeres (< 3 kilobases, CSTs), but not average telomere length by itself, accounts for limited tissue renewal and turnover capacity. The impact of this parameter (which can be modified with different therapies) in chemotherapy-derived toxicity has not been studied.Blood from 115 treatment-naive patients from a clinical trial in early HER2-negative breast cancer that received weekly paclitaxel (80 mg/m2 for 12 weeks) either alone or in combination with nintedanib and from 85 healthy controls was prospectively obtained and individual CSTs and average telomere lenght were determined by HT Q-FISH (high-throughput quantitative FISH). Toxicity was graded according to NCI common toxicity criteria for adverse events (NCI CTCAE V.4.0). The variable under study was "number of toxic episodes" during the 12 weeks of therapy.The percentage of CSTs ranged from 6.5%-49.4% and was directly associated with the number of toxic events (R2 = 0.333; P < 0.001). According to a linear regression model, each 18% increase in the percentage of CSTs was associated to one additional toxic episode during the paclitaxel cycles; this effect was independent of the age or treatment arm. Patients in the upper quartile (> 21.9% CSTs) had 2-fold higher number of neuropathy (P = 0.04) or fatigue (P = 0.019) episodes and >3-fold higher number of myalgia episodes (P = 0.005). The average telomere length was unrelated to the incidence of side effects.The percentage of CSTs, but not the average telomere size, is associated with weekly paclitaxel-derived toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400599 | PMC |
http://dx.doi.org/10.18632/oncotarget.15592 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!