Guilds of dung dwelling and tunneling dung beetles coexist in local assemblages in warm temperate regions, despite the tendency of dwellers to be inferior competitors. A field experiment on the Black Sea coast of Turkey examined the role of temporal resource partitioning in their coexistence. Standardized dung pads deposited at 4 h intervals through a 24 h period in summer were collected 12, 24, or 48 h later. Adults from 10 tunneling and seven dung dwelling species were collected. The tunnelers contributed a high proportion of both total abundance and biomass. There was a significant effect of dung deposition time and exposure period on mean tunneler abundance. Mean tunneler abundance was nearly seven times higher in dung deposited at 06:00 than at 18:00. The dwellers reduced the potential for competitive interactions with tunnelers by relatively uniform dispersal across the six dung deposition times. The distinctly different dung use patterns by dwellers and tunnelers demonstrated temporal resource partitioning. Interspecific correlation coefficients were also determined because interspecific relationships are at the core of resource partitioning. Total tunneler and dweller abundances were not correlated. Overall, there were strong positive correlations between tunneling species and low correlations between tunneling and dwelling species, and between dwelling species. The five most abundant tunnelers, from two tribes and three genera, were strongly positively correlated. There were substantial size differences among the four most abundant tunnelers that probably facilitate their coexistence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388308 | PMC |
http://dx.doi.org/10.1093/jisesa/iew118 | DOI Listing |
Front Microbiol
January 2025
State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
To investigate the influence of immigration on the selection in structuring local water bacterial communities, we conducted a new community assembly experiment using microcosms filled with sterile original water medium under outdoor conditions. We collected air particulate matter from dust pooled from samples collected at 10 locations across ~20 km in a warm temperate region in Linfen City (northern China). The immigration rates were increased by introducing air particulate matter into the microcosms.
View Article and Find Full Text PDFSci Rep
January 2025
College of Resources Environment and Tourism, Capital Normal University, Beijing, 100048, China.
As crucial transportation hubs for urban travel, metro stations catalyze the transformation of their surrounding areas into highly prominent locations where many activities converge. Uncovering the functional attributes of station areas holds immense significance in comprehending citizens' activity demands, thereby offering valuable insights for regional development and planning in proximity to metro stations. This study introduces a framework that improves the process of accurately representing station areas.
View Article and Find Full Text PDFBrowsing by ungulates is commonly assumed to target the upper parts of sapling crowns, leading to reduced vertical growth or even growth cessation. However, the extent to which browsing induces shifts in resource allocation toward lateral growth remains unclear. This study explores the impact of browsing intensity (BI) and light availability on the architectural traits of six temperate tree species, focusing on height-diameter ratio (H/D), crown slenderness (CL/CW), and crown irregularity (CI) across sapling height classes.
View Article and Find Full Text PDFTerrestrial bird populations on small, species depauperate islands often experience selection for generalist foraging traits via ecological release; however, it is unclear how island conditions may uniquely influence other life-history characteristics of small-island birds, such as the unusually high rates of molt-breeding overlap exhibited on the island of Grenada. To explore this question, we collected data on the life cycles and diets of 10 commonly occurring Grenadian bird species to assess the degree of generalist foraging and evaluate how seasonal patterns in diet niche breadth and diet overlap among species relates to the high rates of molt-breeding overlap. We evaluated three hypotheses explaining drivers of molt-breeding overlap (constraints on molt rate, unpredictable food abundance, and limited duration of food abundance), and suggest that widespread overlap in small-island tropical communities may be the result of generalist foraging adaptations and restricted time periods of sufficient invertebrate availability for successful breeding and molt to occur.
View Article and Find Full Text PDFNeural Netw
January 2025
Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China. Electronic address:
Due to the distinctive distributed privacy-preserving architecture, split learning has found widespread application in scenarios where computational resources on the client side are limited. Unlike clients in federated learning retaining the whole model, split learning partitions the model into two segments situated separately on the server and client ends, thereby preventing direct access to the complete model structure by either party and fortifying its resilience against attacks. However, existing studies have demonstrated that even with access restricted to partial model outputs, split learning remains susceptible to data reconstruction attacks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!