The central circadian pacemaker, the suprachiasmatic nucleus (SCN), encodes day length information by mechanisms that are not well understood. Here, we report that genetic ablation of miR-132/212 alters entrainment to different day lengths and non-24 hr day-night cycles, as well as photoperiodic regulation of Period2 expression in the SCN. SCN neurons from miR-132/212-deficient mice have significantly reduced dendritic spine density, along with altered methyl CpG-binding protein (MeCP2) rhythms. In Syrian hamsters, a model seasonal rodent, day length regulates spine density on SCN neurons in a melatonin-independent manner, as well as expression of miR-132, miR-212, and their direct target, MeCP2. Genetic disruption of Mecp2 fully restores the level of dendritic spines of miR-132/212-deficient SCN neurons. Our results reveal that, by regulating the dendritic structure of SCN neurons through a MeCP2-dependent mechanism, miR-132/212 affects the capacity of the SCN to encode seasonal time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864111PMC
http://dx.doi.org/10.1016/j.celrep.2017.03.057DOI Listing

Publication Analysis

Top Keywords

scn neurons
16
central circadian
8
day length
8
spine density
8
scn
7
mir-132/212 modulates
4
modulates seasonal
4
seasonal adaptation
4
dendritic
4
adaptation dendritic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!