Background: The muscle-tendon properties of the semitendinosus (ST) and gracilis (GR) are substantially altered following tendon harvest for the purpose of anterior cruciate ligament reconstruction (ACLR). This study adopted a musculoskeletal modelling approach to determine how the changes to the ST and GR muscle-tendon properties alter their contribution to medial compartment contact loading within the tibiofemoral joint in post ACLR patients, and the extent to which other muscles compensate under the same external loading conditions during walking, running and sidestep cutting.

Materials And Methods: Motion capture and electromyography (EMG) data from 16 lower extremity muscles were acquired during walking, running and cutting in 25 participants that had undergone an ACLR using a quadruple (ST+GR) hamstring auto-graft. An EMG-driven musculoskeletal model was used to estimate the medial compartment contact loads during the stance phase of each gait task. An adjusted model was then created by altering muscle-tendon properties for the ST and GR to reflect their reported changes following ACLR. Parameters for the other muscles in the model were calibrated to match the experimental joint moments.

Results: The medial compartment contact loads for the standard and adjusted models were similar. The combined contributions of ST and GR to medial compartment contact load in the adjusted model were reduced by 26%, 17% and 17% during walking, running and cutting, respectively. These deficits were balanced by increases in the contribution made by the semimembranosus muscle of 33% and 22% during running and cutting, respectively.

Conclusion: Alterations to the ST and GR muscle-tendon properties in ACLR patients resulted in reduced contribution to medial compartment contact loads during gait tasks, for which the semimembranosus muscle can compensate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397063PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176016PLOS

Publication Analysis

Top Keywords

compartment contact
24
medial compartment
20
muscle-tendon properties
16
walking running
12
running cutting
12
contact loads
12
contributions medial
8
contact loading
8
semitendinosus gracilis
8
contribution medial
8

Similar Publications

Cerebrospinal fluid (CSF) has emerged as a valuable liquid biopsy source for glioma biomarker discovery and validation. CSF produced within the ventricles circulates through the subarachnoid space, where the composition of glioma-derived analytes is influenced by the proximity and anatomical location of sampling relative to tumor, in addition to underlying tumor biology. The substantial gradients observed between lumbar and intracranial CSF compartments for tumor-derived analytes underscore the importance of sampling site selection.

View Article and Find Full Text PDF

Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy.

J Am Chem Soc

January 2025

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.

Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.

View Article and Find Full Text PDF

Signal transduction downstream of axon guidance molecules is essential to steer developing axons. Second messengers including cAMP are key molecules shared by a multitude of signaling pathways and are required for a wide range of cellular processes including axon pathfinding. Yet, how these signaling molecules achieve specificity for each of their downstream pathways remains elusive.

View Article and Find Full Text PDF

Background/objectives: Considering the large number of candidates in vaccine-testing studies against different pathogens and the amount of time spent in the preclinical and clinical trials, there is a pressing need to develop an improved in vivo system to quickly screen vaccine candidates. The model of a polyester-polyurethane sponge implant provides a rapid analysis of the specific stimulus-response, allowing the study of a compartmentalized microenvironment. The sponge implant's defined measurements were standardized as a compartment to assess the immune response triggered by the vaccinal antigen.

View Article and Find Full Text PDF

Biological Basis of Cell Trafficking: A General Overview.

J Inherit Metab Dis

January 2025

Department of Neurology and MetabERN; Esplugues de Llobregat, Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.

Cell trafficking is a tightly regulated biological process for the exchange of signals and metabolites between cell compartments, including four main processes: membrane trafficking (transport of membrane-bound vesicles), autophagy, transport along the cytoskeleton, and membrane contact sites. These processes are cross-sectional to cellular functions, ranging from the transportation of membrane proteins, membranes, and organelles to the elimination of damaged proteins and organelles. In consequence, cell trafficking is crucial for cell survival and homeostasis, serving as a cornerstone for cellular communication and facilitating interactions both with the surrounding environment and between different organelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!