AI Article Synopsis

  • Increased expression of syndecan-1 (SDC1) in glioma correlates with higher tumor grades and poorer patient outcomes, indicating its potential role in tumor progression.
  • SDC1 knockdown experiments in glioma cell lines showed reduced cell proliferation and invasion, alongside lower levels of key markers like PCNA and MMP-9.
  • The study suggests that SDC1 influences important signaling pathways, highlighting its potential as a novel therapeutic target for glioma treatment.

Article Abstract

Recent studies have shown that increased syndecan-1 (SDC1) expression in human glioma is associated with higher tumor grades and poor prognoses, but its oncogenic functions and the underlying molecular mechanisms remain unknown. Here, we examined SDC1 expression in datasets from The Cancer Genome Atlas and the National Center for Biotechnology Information Gene Expression Omnibus. Elevated SDC1 expression in glioma was closely associated with increases in tumor progression and shorter survival. We also examined SDC1 expression and evaluated the effects of stable SDC1 knockdown in glioma cell lines. SDC1 knockdown attenuated proliferation and invasion by glioma cells and markedly decreased PCNA and MMP-9 mRNA and protein expression. In a xenograft model, SDC1 knockdown suppressed the tumorigenic effects of U87 cells in vivo. SDC1 knockdown decreased phosphorylation of the c-src/FAK complex and its downstream signaling molecules, Erk, Akt and p38 MAPK. These results suggest that SDC1 may be a novel therapeutic target in the treatment of glioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522338PMC
http://dx.doi.org/10.18632/oncotarget.16733DOI Listing

Publication Analysis

Top Keywords

sdc1 expression
16
sdc1 knockdown
16
sdc1
9
glioma cell
8
proliferation invasion
8
examined sdc1
8
glioma
6
expression
6
syndecan-1 knockdown
4
knockdown inhibits
4

Similar Publications

In this study, we identified cancer-associated fibroblast (CAF) molecular subtypes and developed a CAF-based prognostic model for breast cancer (BRCA). The heterogeneity of cancer-associated fibroblasts (CAFs) and their significant involvement in the advancement of BRCA were discovered employing single-cell RNA sequencing. Notably, we discovered that the RUNX1/SDC1 axis enhances BRCA cell invasion and metastasis.

View Article and Find Full Text PDF

Prognostic model based on tumor stemness genes for triple-negative breast cancer.

Sci Rep

December 2024

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.

Triple-negative breast cancer (TNBC) is an aggressive disease with a poor prognosis and lack of effective treatment. In this study, TNBCs were analyzed from the perspective of tumor stemness based on scRNA-seq data. The analysis showed that tumor cells of TNBC were divided into 4 subtypes, with subtype 2 having the highest stemness score.

View Article and Find Full Text PDF

Background: The ovary is a central organ in the reproductive system that produces oocytes and synthesizes and secretes steroid hormones. Healthy development and regular cyclical change in the ovary is crucial for regulating reproductive processes. However, the key genes and metabolites that regulate ovarian development and pregnancy have not been fully elucidated.

View Article and Find Full Text PDF

Syndecan-1: a key player in health and disease.

Immunogenetics

December 2024

Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.

Syndecan-1 (SDC-1) is a transmembrane protein localized on the basolateral surface of epithelial cells, encompassing a core protein with heparin sulfate and chondroitin sulfate glycosaminoglycan side chains. SDC-1 is involved in a panoply of cellular mechanisms including cell-to-cell adhesion, extracellular matrix interactions, cell cycle modulation, and lipid clearance. Alterations in the expression and function of SDC-1 are implicated in numerous disease entities, making it an attractive diagnostic and therapeutic target.

View Article and Find Full Text PDF

Keloid is the result of abnormal wound healing, puzzled by the invasive growth and high recurrence rate attributed to its complex pathogenic mechanism. Syndecan1 (SDC1) contributes to regulating cell migration and invasion by activating epithelial-mesenchymal transition (EMT) in tumor and fibrotic disease. Herein, using western blot analysis, the authors assessed the role of SDC1 on EMT in keloid and its underlying mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!