Recent papers in the literature introduced a class of neural networks (NNs) with memristors, named dynamic-memristor (DM) NNs, such that the analog processing takes place in the charge-flux domain, instead of the typical current-voltage domain as it happens for Hopfield NNs and standard cellular NNs. One key advantage is that, when a steady state is reached, all currents, voltages, and power of a DM-NN drop off, whereas the memristors act as nonvolatile memories that store the processing result. Previous work in the literature addressed multistability of DM-NNs, i.e., convergence of solutions in the presence of multiple asymptotically stable equilibrium points (EPs). The goal of this paper is to study a basically different dynamical property of DM-NNs, namely, to thoroughly investigate the fundamental issue of global asymptotic stability (GAS) of the unique EP of a DM-NN in the general case of nonsymmetric neuron interconnections. A basic result on GAS of DM-NNs is established using Lyapunov method and the concept of Lyapunov diagonally stable matrices. On this basis, some relevant classes of nonsymmetric DM-NNs enjoying the property of GAS are highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2017.2688404DOI Listing

Publication Analysis

Top Keywords

global asymptotic
8
asymptotic stability
8
neural networks
8
conditions global
4
stability memristor
4
memristor neural
4
networks papers
4
papers literature
4
literature introduced
4
introduced class
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!