During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205092PMC
http://dx.doi.org/10.1089/ast.2016.1544DOI Listing

Publication Analysis

Top Keywords

dust devils
20
vertical grain
12
grain size
12
size distributions
8
relative particle
8
particle load
8
lifted particles
8
dust
6
devils
5
lifted
5

Similar Publications

Dust devil.

Science

January 2025

Climate change may be driving an expansion of Valley fever, a deadly fungal infection spread by airborne spores.

View Article and Find Full Text PDF

Atmospheric turbulence, irregular fluctuations of the fluid state, is studied on Mars. Universality of the turbulence spectrum underpins atmospheric models where computational requirements preclude full fidelity simulations of the smallest scales. However, there are discrepancies among reports on the existence and spectral location of universal scaling in Martian atmospheric data.

View Article and Find Full Text PDF

The fungal disease Valley fever causes a significant medical and financial burden for affected people in the endemic region, and this burden is on the rise. Despite the medical importance of this disease, little is known about ecological factors that influence the geographic point sources of high abundance of the pathogens and , such as competition with co-occurring soil microbes. These "hot spots", for instance, those in southern Arizona, are areas in which humans are at greater risk of being infected with the fungus due to consistent exposure.

View Article and Find Full Text PDF

The sound of a Martian dust devil.

Nat Commun

December 2022

Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France.

Dust devils (convective vortices loaded with dust) are common at the surface of Mars, particularly at Jezero crater, the landing site of the Perseverance rover. They are indicators of atmospheric turbulence and are an important lifting mechanism for the Martian dust cycle. Improving our understanding of dust lifting and atmospheric transport is key for accurate simulation of the dust cycle and for the prediction of dust storms, in addition to being important for future space exploration as grain impacts are implicated in the degradation of hardware on the surface of Mars.

View Article and Find Full Text PDF
Article Synopsis
  • Perseverance's Mastcam-Z captures detailed stereo and multispectral images, offering a comprehensive view of the geology in Jezero crater on Mars.
  • The rocks depicted show features indicating they are of igneous or impactite origin, with minimal water alteration and include various mineral compositions like mafic silicates and olivine.
  • Additional imaging reveals important atmospheric conditions, including dust variations and unique interactions caused by dust devils and the Ingenuity helicopter, which aid in understanding Mars' environment and assist in rover operations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!